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The dynamic behavior and the attainment of steady state by a flocculating suspension in a stirred
tank are evaluated using a population balance model. At long times, shear-induced coagulation
and fragmentation reach a steady state, resulting in a particle size distribution (PSD) that is
invariant (self-preserving) with respect to shear. The geometric standard deviations, σg, of the
self-preserving number or volume PSDs are 2.22 or 1.79, respectively, for the employed
coagulation and fragmentation rates of flocculation. The time required to reach a steady-state
PSD (time lag) is determined as a function of a dimensionless group comprised of the relative
rates of coagulation and fragmentation. The effect of the omnipresent variable shear rate in
stirred tanks during shear-induced flocculation is investigated through a sinusoidal function of
the spatially averaged velocity gradient. Increasing the amplitude of the shear rate fluctuation
decreases the steady-state mass mean floc size, the maximum σg, and the time lag for attainment
of steady state. The asymptotic (self-preserving) σg is not affected by the shear rate amplitude
provided that >99% of the primary particles have grown to larger sizes.

Introduction

Many industrial processes involve coagulation and
fragmentation of the suspended phase in stirred tanks.
Examples include polymerization (Blatz and Tobolsky,
1945), liquid-liquid dispersion (Coulaloglou and Tav-
larides, 1977), emulsification (Danov et al., 1994), and
flocculation (Lu and Spielman, 1985). An important
design and control parameter in these processes is the
size distribution of the suspended particles. In most
practical systems, a steady state or equilibrium is
reached between coagulation and fragmentation after
a certain time (time lag) and the particle size distribu-
tion (PSD) no longer changes. This time lag determines
the process requirements (i.e., batch time, power input,
etc.) of a flocculation process.
Experimental studies have shown that the spatially

averaged shear rate varies significantly throughout a
stirred tank (Cutter, 1966; Sprow, 1967). Realistic
descriptions of flocculation account for the high shear
region around the impeller (impeller zone) and various
bulk regions above and below the impeller with signifi-
cantly lower relative shear rates. Koh et al. (1984,
1987), for example, coupled multicompartmental models
of a stirred tank with the population balance equations
to fit data on scheelite flocculation but considered only
coagulation with no fragmentation. A two-compartment
model gave results as good as those of models using a
larger number of compartments. Kim and Glasgow
(1987) developed a Monte Carlo model of coagulation
and fragmentation assuming random movement/shear-
ing of particles, a size-dependent fragmentation rate,
and a time step based on the frequency of exposure to
the impeller zone. Few comparisons with experimental
data were performed, and good agreement with the
evolution of the average size of kaolin-polymer flocs
was reported (Kim and Glasgow, 1987). Kusters (1991)

combined a six-compartment stirred-tank model with
analytical velocity profiles to track particle residence
times in each compartment. He derived expressions for
the frequency of successful coagulation and fragmenta-
tion and predicted the evolution of the average floc size
well. Recently, Seckler et al. (1995) studied stirred-tank
hydrodynamics using computational fluid dynamic (CFD)
models coupled with a moment model of the particle size
distribution during precipitation. The model identified
specific regions of particle formation in a precipitation
reactor.
The shape of the asymptotic PSD affects the efficiency

of a solids removal process. Theoretical investigations
have indicated that pure shear-induced coagulation does
not result in a self-preserving PSD (Swift and Fried-
lander, 1964; Pulvermacker and Ruckenstein, 1974),
that is, a PSD whose shape scales with the average
particle size. Theoretical (Tambo and Watanabe, 1979;
Family et al., 1986; Meakin, 1988; Cohen, 1992; Spicer
and Pratsinis, 1996a) and experimental (Spicer and
Pratsinis, 1996b) studies have shown, however, that the
steady-state PSD from coagulation-fragmentation pro-
cesses is self-preserving with respect to process condi-
tions. When self-similarity is observed, the individual
coagulation and fragmentation rates in the suspension
may be determined by deconvolution of the steady-state
PSD (Narsimhan et al., 1980; Wright and Ramkrishna,
1994).
The time lag for attainment of steady state by a

coagulation-fragmentation process has been investi-
gated previously (Blatz and Tobolsky, 1945; Peled et al.,
1995), but models incorporating realistic, size-dependent
rate expressions have not been used. In addition, few
studies have been carried out on the effect of heteroge-
neous flow conditions on a flocculating particle size
distribution. The objective of this study is to determine
the time lag for attainment of steady state by coagula-
tion and fragmentation using rates commonly encoun-
tered during flocculation (Lu and Spielman, 1985). To
meet this goal, a population balance model is used
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(Spicer and Pratsinis, 1996a) that has successfully
simulated experimental data of polystyrene particle
flocculation (Oles, 1992). Furthermore, the effect of
constant and varying shear rates on the time lag and
the polydispersity of the steady-state PSD is investi-
gated and related to controllable process variables
through dimensionless groups.

Theory

The dynamic behavior of the particle size distribution
undergoing simultaneous coagulation and fragmenta-
tion is given by (Friedlander, 1977; Kusters et al., 1993):

where ni is the number concentration of flocs of size i
(meaning that a single floc contains i primary particles).
The first term on the right-hand side (RHS) of eq 1
represents the formation of particles comprised of i
primary particles by collisions of smaller j- and k-sized
particles. The second RHS term denotes the loss of
particles of size i by collision with particles of any other
size. The third RHS term describes the loss of particles
of size i by fragmentation, and the fourth RHS term
describes the formation of particles of size i by the
fragmentation of larger particles. The index max
represents the largest particle size. Equation 1 is the
discrete form of the population balance equation, that
is, it describes the change in number concentration of
each individual particle size. Thus, in order to model
the evolution of the detailed particle size distribution
during flocculation, the solution of an enormous number
of differential equations would be required using a
discrete model. To ease computations, the particle size
distribution is divided into size classes or sections.
Equations are written describing the change in par-

ticle number concentration in each section based on
Hounslow et al. (1988) and Spicer and Pratsinis (1996a):

where Ni is the number concentration of flocs of size
class i (meaning that a single floc contains 1.5 × 2i-1
primary particles), R is the collision efficiency for
coagulation, âi,k is the collision frequency for particles
of size class i and k with characteristic volumes vi and
vk, Si is the fragmentation rate of flocs of volume vi, and
Γi,j is the breakage distribution function defining the
volume fraction of the fragments of size i coming from
j-sized particles. The index i max is the number of
sections used in the model (here i max ) 30).
The collision frequency for turbulent shear-induced

coagulation, in the absence of viscous retardation and
floc structural effects, is (Saffman and Turner, 1956)

where G is the spatially averaged shear rate (Clark,
1985) given for fluctuating shear rates by:

G′ is a constant (e.g., 50 s-1) and ω is the maximum
magnitude of the fluctuation in G. A range of ω values
were examined here (ω ) 0, 30, 40, 50 s-1).
The fragmentation rate is a function of particle

volume (Pandya and Spielman, 1982):

where a ) 1/3 (Boadway, 1978; Peng and Williams,
1994), consistent with the theoretical expectation that
breakage rate is proportional to the floc diameter. The
parameter A is the breakage rate coefficient for shear-
induced fragmentation (Pandya and Spielman, 1982):

where y is a constant inversely proportional to the floc
strength and A′ is a proportionality constant that is
determined experimentally. The value of y ) 1.6 was
used in all calculations corresponding to kaolin-
polymer and polystyrene flocs (Pandya and Spielman,
1982; Spicer and Pratsinis, 1996a). The constant A′
affects the relative strength of fragmentation relative
to coagulation and a value of 0.0047 is used here (Oles,
1992; Spicer and Pratsinis, 1996a).
For all calculations, binary breakage was assumed

(Spicer and Pratsinis, 1996a):

Equations 3-7 were substituted into eq 2, and the
sectional model was solved numerically using DGEAR,
an ordinary differential equation solver (IMSL, 1989).
The behavior of a coagulation-fragmentation system

is a function of the relative significance of the rates of
coagulation and fragmentation (Blatz and Tobolsky,
1945). As a result, it is convenient to define a dimen-
sionless group that characterizes the relative signifi-
cance of coagulation versus fragmentation, CF:

where φ is the volume fraction of suspended particles,
v0 is the volume of a primary particle, and â0,0 and S0
are obtained by substituting v0 into eqs 3 and 5,
respectively.

Results and Discussion

Unless stated otherwise, all calculations were carried
out for G ) 50 s-1, R ) 1, ω ) 0, A′ ) 0.0047, y ) 1.6,
initial diameter d0 ) 2.17 µm (corresponding to an initial
volume of v0 ) 5.35 µm3), and initial number concentra-
tion N1 ) 9.3 × 106 cm-3 (Oles, 1992; Spicer and
Pratsinis, 1996a). The model was validated by com-
parison with analytical solutions for the case of pure
coagulation with a size-dependent kernel (Golovin,
1963), pure fragmentation (Williams, 1990), and the
combined case (Blatz and Tobolsky, 1945). At all
conditions excellent agreement between the numerical
and analytical solutions was obtained (Spicer and
Pratsinis, 1996a).
Development of the Steady-State Floc Size Dis-

tribution. Figure 1 shows the evolution of the initially
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monodisperse particle size distribution as a function of
dimensionless time, τ ) Gφt (Oles, 1992). Initially,
growth is slow as the small primary particles collide and
form larger ones. Figure 1a shows the evolution of the
number distribution. After 1τ, the distribution remains
in the first few size classes. After 10τ, an additional,
bell-shaped mode forms and the primary particle size
class is further depleted. Fragmentation prevents
further growth of the larger mode, and these particles
serve as collectors of fines (primaries); accelerating the
depletion of the primary particles until after 20τ, the
distribution no longer changes (e.g., at 30τ). It is worth
noting that the primary particles constitute a large
(number) fraction, N1ss ) 5%, of the steady-state size
distribution.
Figure 1b shows the evolution of the volume distribu-

tion as a function of τ. Similar to Figure 1a, the initially
monodisperse distribution grows into the larger size
sections, forming a bell-shaped mode after 1τ. After 10τ,
the distribution is indistinguishable from that at 15τ,
and steady state is attained in about half the time
required for the number-based distribution. The steady-
state volume-based PSD is attained much faster than
the number-based distribution because the primary
particles do not contribute significantly to the former
PSD.
Effect of Shear Rate on the Attainment of Steady

State. The geometric standard deviation of the floc size
distribution, σg, quantitatively characterizes the width
of the distribution (Hinds, 1982). Figure 2 shows the
evolution of σg for various shear rates, G (ω ) 0). After

an initial lag period, the number-based geometric
standard deviation, σgn, increases as the distribution
broadens into the larger size classes (Figure 1a). A
maximum value is reached (e.g., σg ) 3.27 at τ ) 15 for
G ) 10 s-1) corresponding to the maximum displace-
ment of the larger mode from the primary particle mode
of the distribution. As the primary particles are de-
pleted (Figure 1a), σgn decreases until leveling off at an
asymptotic value, σgnss, corresponding to the attainment
of the steady-state size distribution (σgnss ) 2.22 at τ )
28 for G ) 10 s-1).
Increasing the shear rate, G, results in an increased

fragmentation rate (eq 5), preventing further growth of
the steady-state particle size distribution. As a result,
the steady-state PSD is displaced to smaller sizes and
narrowed as the number of primary particles present
at steady state is increased compared to the steady-state
PSD at lower shear rates (e.g., at G ) 50 s-1 the
concentration of primary particles at steady state is N1ss
) 5%). This is shown in Figure 2 where σgnss decreases
with increasing G. Furthermore, the maximum in σgn
decreases with increasing G since the two size modes
(primary particles and flocs) become increasingly indis-
tinguishable. For example, the primary particle con-
centration at steady state is 5% for G ) 50 s-1 and
becomes 18% for G ) 100 s-1 (Spicer and Pratsinis,
1996a).
Figure 2 also shows the evolution of the geometric

standard deviation, σgv, of the corresponding volume-
based PSD. A rapid increase in σgv is initially observed
as the distribution broadens and larger particles are
formed (Figure 1b). As with the number-based PSD, a
maximum is reached, corresponding to the maximum
separation of the primary particle and floc modes. At
a constant G, the maximum σgv is smaller than the
maximum σgn because of the larger relative contribution
of the primary particles to the number- versus the
volume-based PSD. At the employed shear rates the
primary particles contribute little to the latter distribu-
tion, so the same σgv is attained at all shear rates. The
steady-state σgv is unchanged by the shear rate, con-
sistent with Spicer and Pratsinis (1996b), who found
that shear does not change the width of the polystyrene
floc size distribution at steady state, so it is self-
preserving with respect to shear.
Figure 3 shows the steady-state geometric standard

deviation for the number- and volume-based PSD (σgnss

Figure 1. Evolution of the (a) number- and (b) volume-based
particle size distributions during shear-induced flocculation at
initial conditions N1 ) 9.3 × 106 cm-3, d1 ) 2.17 µm, G ) 50 s-1,
R ) 1, A′ ) 0.0047, and y ) 1.6.

Figure 2. Evolution of the number- and volume-based geometric
standard deviations of the size distribution at three constant
average shear rates, G. As flocculation broadens the size distribu-
tion, σg reaches a maximum and then decreases to an asymptotic
value at steady state.
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and σgvss, respectively) as a function of the coagulation-
fragmentation group, CF, for various shear rates G and
breakup coefficients A. In Figure 3, all values of σgnss
and σgvss collapse onto a single curve when scaled by
the dimensionless parameter CF. This indicates that
a universal asymptotic behavior is exhibited by a
coagulation-fragmentation system for this combination
of rate expressions. In Figure 3, σgnss increases and
approaches an asymptotic value of 2.22 with decreasing
values of CF. This asymptotic behavior is indicative of
the self-preserving properties of the fully developed
steady-state PSD (Spicer and Pratsinis, 1996a,b). In-
creasing the CF corresponds to increased fragmentation
relative to coagulation, causing σgnss to decrease from
its value when fully-developed (N1ss e 0.01NTss, where
NTss is the total number concentration present at steady
state). This is attributed to the narrowing of the size
distribution as increased fragmentation shifts the dis-
tribution to the smallest sections. The threshold CF (1%
from the asymptotic CF) corresponding toN1ss e 0.01NT
is CF ) 0.013. Figure 3 also shows the effect of CF on
σgvss. Here also, increasing CF slightly decreases σgvss
below the self-preserving σgvss ) 1.79. The effect of
increased fragmentation rates is smaller for the volume-
based than for the number-based PSD because of the
sensitivity of the latter distribution to the dynamics of
the primary particles. This is seen in Figure 3 as a
significant decrease in σgnss to the right of the dotted
line, indicating the number fraction of the smallest
particles exceeding 1%. For the volume distribution, the
deviation of σgvss from self-similarity occurs when V1ss
g 0.01VTss (where VTss is the total solids volume present
at steady state).
The dynamics of the floc size distribution can be

quantitatively characterized through the evolution of σgn
and σgv of the distribution (Figure 2). In addition, σg is
readily measured by light-scattering techniques and is
used as a measure of product particle quality in numer-
ous industrial processes. Thus, σg provides a practical
and theoretical criterion for the attainment of steady
state and thus the time lag before attainment of steady
state. By analogy with previous work on Brownian
coagulation (Vemury et al., 1994), the criterion for the
attainment of steady state was defined as the dimen-
sionless time (τss) at which the distribution was within

1% of its steady-state σg. Figure 4 shows the steady-
state time lag, τss, for the number (τnss) and volume (τvss)
distributions as a function of CF. As in Figure 3, τss
values collapse onto a single curve for the number- and
volume-based PSD when scaled with CF. Linear re-
gression gives

At low CF, a large difference between τnss and τvss is
observed. Lower values of CF correspond to increased
collision rates for small particles (eq 8). As a result,
the size distribution is able to develop into larger sizes
before fragmentation halts its progress. Increasing the
CF decreases τss for both number and volume distribu-
tions as a result of the increased fragmentation rates
and the resulting decreased extent of PSD development.
It is interesting to note that the scaling of τss is
unchanged by a deviation from the self-preserving σg
of the steady-state size distribution (i.e., the values of
τss collapse onto a single curve even to the right of the
broken line, indicating the point of deviation from the
self-preserving size distribution). τnss is significantly
larger than τvss as a result of the larger effect of the
primary particle dynamics on steady-state attainment
by the number-based PSD.
Effect of Shear Rate Fluctuations on the Attain-

ment of Steady State. Equation 4 is a simplified
description of the variation of the instantaneous shear
rate within the turbulent flow field of the stirred tank.
This description is based on the concept of an average
circulation time for a suspended particle or fluid element
(Oldshue, 1984; Kim and Glasgow, 1987). Particles are
exposed to a spectrum of shear rates during the floc-
culation process. For example, fluid elements start from
a region of say, average G, reach the region of maximum
G at the impeller zone, then reach the relatively
stagnant region above the impeller, and finally return
back to the high shear impeller zone. This is consistent
with the flow pattern for a radial flow impeller such as
a Rushton configuration (Holland and Chapman, 1966).
Increasing the amplitude of the shear rate fluctuation,
ω, increases the range of G experienced by the sus-

Figure 3. Steady-state number- (open symbols) and volume-based
(filled symbols) geometric standard deviations, σgnss and σgvss, as
a function of the coagulation-fragmentation group CF for various
shear rates G. σgss increases as CF decreases, allowing flocculation
to broaden the size distribution. An asymptotic value is reached
below a critical value of CF, indicating a self-preserving steady-
state PSD that includes very few primary particles (broken line:
N1ss < 0.01NT).

Figure 4. Steady-state time lag for the number- (open symbols)
and volume-based (filled symbols) PSDs as a function of CF.
Increasing the significance of fragmentation decreases the time
lag for steady-state attainment by limiting the development of the
PSD. When scaled by CF, the time lag data collapse onto two
universal lines independent of the degree of development of the
steady-state size distribution.

τnss ) -22.35 log CF - 20.69

τvss ) -5.60 log CF + 0.496 (9)
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pended particles. The shear rate variation for the four
cases examined in this study were G ) 50 s-1 and ω )
0, 30, 40, and 50 s-1.
Figure 5 shows the evolution of the dimensionless

mass mean floc diameter (Hinds, 1982), dmm/d0, at
various shear rate amplitudes. During the growth-
dominated region of flocculation, dmm increases rapidly
as shear-induced collisions promote particle growth. As
larger particles are formed, the significance of fragmen-
tation increases, the particle growth rate slows down,
and dmm levels off so a steady state is reached (τ ) 8 at
ω ) 0 as in Figures 1-3). It is interesting to note that
the system reaches a stable steady state (with small
oscillations) despite the large variance in the value of
G, consistent with experimental data (Reich and Vold,
1959; Oles, 1992; Spicer and Pratsinis, 1996b). Increas-
ing ω slows the growth of dmm, resulting in smaller
particles at steady state. Exposure of the flocs to larger
shear rates at higher G amplitudes increases their
fragmentation rate, providing a greater contribution of
fragmentation to the attainment of steady state. During
the later stages of flocculation the role of fragmentation
in steady-state attainment is significant, so the largest
values of G restrict floc growth.
Figure 5 showed that the evolution of the PSD and

the average floc size are influenced by fluctuations in
the shear rate. Figure 6 shows the effect of ω on the
evolution of σg for G ) 50 s-1. In Figure 6, σgn follows
the trend observed in Figure 2: the distribution width
increases initially, reaches a maximum, and then de-
scends to its steady-state value. Increasing ω slightly
accelerates the initial (τ < 10) increase in σgn relative
to the case of constant shear as a result of the strong
dependence of the collision frequency of the larger
particles on shear rate (eq 2). The second mode of the
distribution forms more rapidly with increasing shear
rate amplitude, thus accelerating the rate of increase
by σgn. Once fragmentation becomes significant, how-
ever, the larger fluctuations in G significantly suppress
the growth of larger particles, reducing the maximum
σgn (Figure 6). The steady-state value of σgn is decreased
slightly by increasing the amplitude of the shear
fluctuations since the fraction of the primary particles
increases (e.g., for ω ) 0, N1ss ) 5%, while for ω ) 50
s-1, N1ss ) 8%). When the progress of the distribution
is halted at lower sizes by fragmentation, the steady-

state distribution will be narrower (Spicer and Pratsinis,
1996b) with a corresponding decrease in σgn.
The effect of increasing ω is smaller for σgv than for

σgn but similar: the maximum σg reached decreases as
the shear fluctuations increase in magnitude. This
reflects the restriction of floc growth into the larger
sizes, producing a distribution of smaller relative par-
ticle sizes (Figure 5). As for the case of ω ) 0, however,
the distribution is able to fully develop before fragmen-
tation balances growth completely. As a result, σgvss
changes very little with respect to ω. The fluctuation
of G shifts the steady-state PSD into the lower sizes
(Figure 5) but does not significantly influence its shape
since the contribution of the primary particles to the
steady-state volume-based PSD is very small.
The results in Figure 6 indicate the importance of

shear fluctuations on the development of the PSD. The
asymptotic behavior of the system is also affected by
the fluctuations. Figure 7 shows the steady-state floc
number and volume distributions, plotted in normalized
form (i.e., vi normalized by the number-average volume,
vn) to evaluate their self-preserving properties, as a
function of ω. In all four number distributions in Figure
7, the large shoulder of the normalized distribution
collapses onto a single line. The only deviation from

Figure 5. Evolution of the dimensionless mass mean diameter
as a function of the maximum amplitude of the fluctuation in G,
ω. The mean floc size increases during the growth-dominated
regime and then levels off once steady state is attained. Increased
ω decreases the steady-state value as a result of increased
fragmentation.

Figure 6. Evolution of the number- and volume-based geometric
standard deviation of the size distribution as a function of the
amplitude of the spatially averaged shear rate, G. Larger ampli-
tudes increase fragmentation, suppressing the development of the
size distribution and thus decreasing its width.

Figure 7. Effect of ω on the shape of the self-preserving steady-
state floc number and volume distributions. The steady-state
number-based PSD narrows as a result of the increased fragmen-
tation at higher ω, but the volume-based PSD does not since
primary particles contribute less to the latter PSD.

3078 Ind. Eng. Chem. Res., Vol. 35, No. 9, 1996



self-similarity is at the lower size range of the number-
based PSD, where restriction of the distribution by
fragmentation prevents total depletion of the primary
particles (Spicer and Pratsinis, 1996a). Increasing ω
accelerates fragmentation, resulting in a larger fraction
of primary particles. In Figure 7, full self-similarity of
the steady-state floc volume distribution is observed for
all ω. Shear fluctuations do not affect the shape of the
asymptotic volume distribution when the primary par-
ticles contribute less than 1% of the mass of the
suspension (Figure 6).
Figure 8 shows the effect of ω on the steady-state time

lag for the number and volume distributions. Increas-
ing the amplitude of the shear fluctuations decreases
the time required for both distributions to attain steady
state, while increased shear decreases the time lag for
steady state as the distribution is halted at smaller
sizes. As ω is increased, the intensity of fragmentation
increases, and the distribution attains steady state more
rapidly because less particle growth is possible.

Conclusions

A theoretical model of coagulation and fragmentation
has been used to describe shear-induced flocculation.
The initially monodisperse size distribution broadens
as particles grow by shear-induced coagulation. The
width of the size distribution increases initially, passes
through a maximum as two particle size modes are
formed, and then decreases as the fine size mode is
depleted to reach an asymptotic value at steady state.
Increased shear rates decrease the number-based σg at
steady state and to a lesser extent the volume-based
σg. σg is used as a criterion to quantify the attainment
of steady state and determine the time lag for attain-
ment of steady state, τss. τss decreases with increased
significance of fragmentation by halting development
of the distribution at smaller particle sizes. A dimen-
sionless group, CF, is found that describes the relative
significance of coagulation and fragmentation. For CF
< 0.013 the steady-state size distribution has fully
grown and has a number- or volume-based geometric
standard deviation of 2.22 or 1.79, respectively.
The heterogeneous flow field of a stirred tank is

simulated using a sinusoidally varying average shear
rate. Increasing the shear rate amplitude, ω, decreases
the steady-state mass mean floc size and the steady-
state time lag, but it does not affect the width of the

distribution provided that most primary particles (>99%)
have grown into larger particles.
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