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We review the diverse range of materials made up of rod-shaped colloids. A common feature of such

suspensions is the strong and efficient contribution of rods to the material’s solid-like rheological

properties such as elastic modulus and yield stress. Colloidal rod suspensions span from biomaterials

such as f-actin and fd virus to inorganic materials such as boehmite and hematite, and to commercial

fibers such as cellulose. We argue that, depending on the strength of pair potential interactions, such

rod suspensions form microstructures that vary between the two limits of heterogeneous fractal clusters

and homogeneous fiber networks. The volume fraction range for transition between these two limiting

cases is strongly aspect ratio dependent. The two limiting microstructures can be distinguished by

differences in the scattering vector dependence of their structure factors, as long as the range of

scattering vector probed is sufficient to span regimes both above and below qL z 1. Here q is the

scattering vector and L is the rod length. Theories of the Brownian dynamics of fractal clusters and fiber

networks show that the two types of microstructure can lead to the arrested dynamics of gelation and

the glass transition, respectively. The volume fraction and aspect ratio dependences of the dynamical

slowing down of these two cases differ significantly; we suggest that probing these differences is

a convenient way to distinguish between gels and glasses of colloidal rods. This distinction is important

to clarify because these microstructures are determinants of rheological properties such as elasticity and

yielding. By combining these structural and dynamical ideas about rods, we classify a set of literature

measurements on more than fifteen different colloidal materials and thereby distinguish between

regimes of gelation and vitrification. We conclude by suggesting directions for future research in the

arrested dynamics, the non-linear rheology, and the absolute lower limit of gelation in colloidal rod

suspensions.
1 Introduction

Many classes of soft matter microstructures exhibit a tailored

rheological response because of the interaction of rods. For

example, networks of actin filaments and microtubules produce
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the mechanical response of the cytoskeleton.1,2 Carbon nano-

tube3,4 or natural fiber5 networks produce a static modulus that

affects the performance of polymeric composites. Pulp and paper

fiber networks6,7 yield the mechanical integrity that is a prereq-

uisite for processing and press performance. Magneto- and

electrorheological fluids may also include rod particles.8,9

In these materials the basic building block10 that yields the

rheological response is a rod-shaped microscopic particle.

Whether a pulp fiber, a wax crystal, or an actin filament, the
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properties that are most germane to the rheological response of

these materials are the anisotropic excluded volume of the

particle and the colloidal forces that the particles exert on their

surroundings. The dimensions of the rod building blocks of these

materials vary widely; however, characteristic sizes from �1 nm

to 10 mm, the domain of soft matter, are very common. Fig. 1

summarizes the tremendous diversity of soft materials that are

comprised of rod-shaped particles. The characteristic size of the

rods varies from molecular-scale rigid rod polymers, such as

xanthan gum,11 which are used as food additives, to colloidal

metal oxide rods, which are used in magnetic storage12–14 as well

as shear-thickening materials,15 to granular fibers, which are used

in composites or paper pulp.6

Granted microstructures comprised of spheres, plates, and

discs are also well represented in soft matter. Nevertheless, the

scope of Fig. 1 makes clear that rod shape is a key foundation for

generating soft matter rheological response. The rod structures

shown in Fig. 1 are drawn from a diverse literature spanning

multiple, partially overlapping areas as well as three orders of

magnitude in aspect ratio. This review will address the question

of what can be learned about the microstructure and rheology of

these materials by considering them within a common
Fig. 1 Examples of rod colloids spanning four orders of magnitude in length

sources, research areas, and applications of these materials emphasize the

importance of unifying the literature of this field under a common framework.

c–e, and i by one of the authors (P.S.).
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framework. Unifying these different literatures is useful because

the amount of fundamental study they have enjoyed varies

widely, as does the degree of commercial interest in the different

materials. To understand this variation, consider the three

examples of actin (Fig. 1f), organo and hydrogelators (Fig. 1n

and o), and cellulosic natural fibers (Fig. 1e), in more detail.

Actin polymerizes in multiple modes to form the structural

framework of our cells, providing elasticity and mechanical

integrity to the bodies of living creatures and even propelling

them in some cases.16 The study of actin biopolymer yields

insight into cell mechanics17 and the mechanisms of rod disper-

sion rheology. Actin has been principally modeled by extensions

of dilute and concentrated polymer rheology18 to account for

semi-flexibility, bending moments, and glassy dynamics.19–23

Other biomaterials such as tobacco mosaic or fd virus are also

excellent monodisperse model rod systems that, because of their

rich equilibrium phase behavior,24 have been used to test theo-

retical models of liquid crystallinity.25

The gelation of oil or water systems using, respectively, orga-

nogelators or hydrogelators is an important area of rod disper-

sion research that balances fundamental and applied concerns.

Examples of gelator compounds include hydroxystearic acid26
and three orders of magnitude in aspect ratio.15,16,32,91,99,116–124 The diverse

broad need for more fundamental understanding of rod gels and the

Images reprinted with permission from the indicated references. Images a,
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and gemini surfactants.27 These systems usually form gels from

self-assembled and/or crystallized rod structures. These struc-

tures can be cross-linked or non-interacting depending on their

chemistry28 and whether they are used in cosmetics,29 greases,26

or paints.30 Characteristic structural features of gelator rods can

span multiple decades because molecular-scale fibril micelles may

hierarchically assemble into colloidal fiber and rod structures.27

Most published work focuses on gelator chemistry; comprehen-

sive rheological studies of these materials are less common.31,32

As a final example, consider that natural cellulose fibers, a rod-

shaped particle, are a key component of material performance in

the high-volume application of pulp and papermaking. Moti-

vated by its value as a raw material, rheological research in paper

pulp networks and rheology is widespread.6,7 An emerging

application of cellulosic materials is as a constituent of biomass

that is enzymatically processed for biofuels.33

While rod suspensions of actin, gelators, and cellulose appear

nearly unrelated from the point of view of both applications and

attention paid to their fundamental physics, these systems and

their microstructural effects on rheology are linked by the

commonality of their rod-shaped building blocks. In this review

we present a unifying framework within which the gelation,

vitrification and rheology of the diverse material classes of Fig. 1

may be addressed. We argue that the common features of rod

anisotropy and colloidal microstructure connect the materials in

Fig. 1 and that their rheology, particularly whether they will

display the solid-like viscoelasticity of gels and glasses, can thus be

described on this universal basis. We suggest that rod micro-

structure can be modeled along a spectrum that spans from one

limiting case of fractal clusters to another limiting case of homo-

geneous rod networks. These cases correspond to two limits for

the onset of slow dynamics—rod gels and rod glasses—that are

important to most applications of the materials of Fig. 1. We

conclude by investigating how literature studies of the Fig. 1

materials fit into the spectrum of possible arrested gel and glass

structures. We furthermore identify questions for further devel-

opment given the increasing commercial and research importance

of rod colloids.
2 Common features of rod suspensions

For applications, a common research aim is to predict rod

dispersion rheological response from underlying physicochemical

properties in order to correlate processing and stability charac-

teristics of product formulations with rheological behavior.

Rheological properties of interest are the linear viscoelastic

moduli, G0(u) and G00(u), the shear-rate dependent viscosity, h( _g),

and the yield stress, sy. The linear viscoelastic moduli are a function

of the unperturbed (quiescent) suspension microstructure while

the non-linear rheological properties such as the viscosity and yield

stress require explicit consideration of flow effects on microstruc-

ture.34 The fluid-phase microdynamics and rheology of rigid rod

suspensions have been investigated in a number of contexts,

particularly in the areas of rigid rod polymers18,35–41 and in the

hydrodynamics of fiber suspensions.42–47 The rheological behavior

of ordered solutions of rigid rods has also been addressed.48–51

In this review we focus on the origin of solid-like rheology of

rod suspensions, since such elasticity is crucial to many complex

fluid and soft matter applications. The principal way to generate
This journal is ª The Royal Society of Chemistry 2010
a significant level of elasticity in colloidal suspensions is to arrest

particle dynamics at the microscopic level. There are multiple

kinds of structures that can result in microscopic dynamic arrest.

For suspensions of spheres, gels are taken as materials with slow

dynamics due to attractive interactions and bonding; glasses are

materials with slow dynamics due to excluded volume interac-

tions and packing.52,53 We adopt the same terminology for rod

suspensions. We are particularly interested in the physical and

colloidal properties that lead to gelation or vitrification, since, as

we will see, the underlying microstructures linked to these two

kinds of slow dynamics are so different.

How are these gel and glass definitions typically linked to the

application requirements of a colloidal rod formulation? An

example is the production of carbon nanotube composites, which

requires the dispersion of colloidally unstable multi-walled

carbon nanotubes in highly viscous polymer melts. Such rod

dispersions must flow at low shear stresses. These constraints

require a quiescently formed network to rapidly break down and

then re-gel upon cessation of flow.54 Phenomena such as perco-

lation, phase stability, aggregation, flexibility and polydispersity

have all been found to affect performance.4,55–60 Such needs,

constraints and behavior are identical to those of liquid

consumer products. These materials use colloidal rod gels to

suspend dispersed phases like emulsion droplets: liquid soap and

shampoo processing requires resilience to shear stress during

transport but rapid restructuring is also necessary once the

product is in the bottle. The same product must flow easily when

a consumer dispenses it, but then regain its structure and stability

once application ends and the product is stored. In terms of

numerical magnitudes, typical requirements are small yield

stresses (�0.5 Pa) and short structural recovery times (�1 min).

Thus, although the composition and chemistry of the rod

suspensions in Fig. 1 vary considerably, they share the common

feature of the colloidal scale. Given that the rod length is such

that the suspension is in the colloidal domain,61 four key physi-

cochemical properties control the microstructure, dynamics and

rheology of rod-containing materials at this scale: (i) interparticle

forces; (ii) aspect ratio; (iii) particle number density; and (iv)

flexibility.
Interparticle forces

Rod suspensions are typically prepared at a number density in

which contacts between rods are common—indeed, as discussed

earlier, it is such jammed or gelled states that generate the

mechanical properties of ultimate interest for applications. Rod

contacts may involve charge, dispersion, or depletion forces, and/

or frictional interactions. Such interparticle forces are a deter-

minant of the structural heterogeneity of the rod network.

Possible structures, as considered in the next section, range from

homogeneous networks of non-interacting rods to heterogeneous

fractal clusters in cases where the rods are strongly interacting.

The strength of interparticle forces in rod suspensions may be

parameterized by the dimensionless quantity Ucontact/kBT, where

Ucontact is a characteristic pair potential energy of two rods at

contact and kBT is the energy scale of thermally induced Brow-

nian forces. Although the pair potential is a function of separa-

tion and orientation, interactions in rod dispersions are often

short-ranged, especially relative to the rod length, L. The contact
Soft Matter, 2010, 6, 1391–1400 | 1393



potential (or, alternatively, the second virial coefficient) is

a useful characteristic quantity in this case.

Thus, the limit Ucontact/kBT � 1 corresponds to the case of

non-interacting rods. Ucontact/kBT [ 1 corresponds to strongly

interacting rods that are more likely to display irreversible

kinetics such as diffusion-limited cluster aggregation (DLCA).

Intermediate values, Ucontact/kBT z 1, lead to effects such as

weak aggregation, transient gelation and/or phase separation.

This intermediate range of potentials, best studied for the cases

of thermoreversible and polymer depletion interactions, is of

great importance to the assembly of orientationally ordered

phases.62–67 Yet, practically, the isotropic phase of rods is very

commonly encountered and this case can be accessed in either the

strongly (Ucontact/kBT [ 1) or weakly interacting (Ucontact/

kBT � 1) limits. Thus, the precise control of interactions

required to generate Ucontact/kBT z 1 is not a necessary condi-

tion for the practical application of the materials shown in Fig. 1.
Aspect ratio

The anisotropic excluded volume of rods affects their amorphous

packing and phase stability. Brownian translational and rota-

tional dynamics are a strong function of the rod length.18 At the

particle level, shape is typically modeled as either that of

a prolate spheroid or a cylinder with hemispherical end caps.

Rod shape has also been described as acicular or needle-like.

Although the small differences between these geometries can

affect the location of order–disorder transitions of liquid crystal

phases68,69 at small aspect ratios, as can polydispersity,56 the

amorphous and gel structures that are of interest to this review

are less sensitive to such fine shape details, particularly at high

aspect ratio. In this case it is the ratio of rod length, L, and width,

b, the aspect ratio, r ¼ L/b, that determines the effect of excluded

volume interactions on microstructure.
Number density

Along with aspect ratio and pair interactions, number density, r,

completes the set of parameters that controls the microstructure

of rigid rods. Here r is proportional to the volume fraction f; f¼
rVp where Vp is the rod particle volume (e.g. Vp ¼ (1/6)pLb2 for

a prolate spheroid; Vp ¼ (p/4)Lb2 + (p/8)b3 for a cylinder with

spherical end caps). In the non-interacting limit, there are three

concentration regimes.18 For r � 1/L3 (f � 1/r2), the rods are

dilute and rarely interact, either structurally or dynamically. In

the semi-dilute range, 1/L3 � r � 1/bL2 (1/r2 � f � 1/r), each

rod has few structural contacts with its neighbors but suspension

Brownian dynamics are a strong function of number density.

This strong dependence arises because particle rotations are

hindered as a consequence of the fact that the mean separation

between rods is less than the rod’s length. Finally, in the isotropic

concentrated regime, r [ 1/bL2 (f [ 1/r), rod rotation is

severely hindered by strong structural correlations and multiple,

random inter-rod contacts. Concentrating a rod system into this

range also yields the order–disorder transitions of liquid crys-

tals.24,70,71 Greater concentrations still yield phases with both

positional and orientational order, as well as close-packed

limits.68,69,72,73 These limiting concentration regimes are routinely

applied to classify rigid rod polymer solutions. The extension to
1394 | Soft Matter, 2010, 6, 1391–1400
rigid rod colloids is straightforward; however, implicit in these

expressions is the assumption of Ucontact/kBT� 1. For example,

the concentrated isotropic rod solution limit, r [ 1/bL2, arises

from the scaling of the excluded volume interaction of two rods.

Because many of the structures in Fig. 1 are formed from

strongly interacting rods, the typical division into dilute, semi-

dilute and concentrated isotropic regimes requires refinement in

these cases.
Flexibility

In addition to the three attributes described above for rigid

particles, the rods of Fig. 1 may also vary from fully rigid to semi-

flexible. Flexibility is characterized by the length ratio L/lp, where

lp is the persistence length, a quantity that can be extracted from,

for example, static light scattering74 or direct visualization

measurements.75 (The persistence length is the distance along the

contour of a rod for which the ensemble-averaged, mutual

orientation of two points first becomes decorrelated.) Thus, for

rigid rods, L/lp � 1, while for semi-flexible filaments, L/lp z 1.

Although it is clear that low-aspect ratio particles comprised of

inorganic materials such as boehmite or hematite fall in the rigid

limit, nanotubes and cellulose fibers may show semi-flexible

behavior when sufficiently long. For example, the persistence

length of single-walled carbon nanotubes has been reported to be

lp z 30–170 mm.75 This quantity is also diameter dependent.55

Biopolymers such as actin display the effects of semi-flexibility,

particularly in their high frequency rheology.19,20 This rheolog-

ical response at high frequencies is a function of the bending

modulus or rigidity, k, which is dependent on the persistence

length (k ¼ lpkBT).18
3 Structural models: heterogeneous fractal clusters
and homogeneous fiber networks

Classical discussions of rod suspensions were motivated by

interest in rigid rod polymer solutions, colloidal liquid crystals,

and molecular liquids. Although the effect of pair interactions

has been addressed,63,66,76,77 the effects of excluded volume

repulsion are the principal determinant of the equilibrium phase

behavior. In this case, Ucontact/kBT ¼ 0 and the rod density is

spatially homogeneous in the sense that the mean size of any

voids and clusters is limited to dimensions less than the rod

length, L. However, many practical systems differ from this case

in one of two ways. First, the rod density may be spatially

heterogeneous on scales greater than L because of strong

attractive interactions (Ucontact/kBT [ 1). Second, the rod

particles may be semi-flexible. In the first case, strong attractive

interactions induce aggregation. At the dilute volume fractions

typical of rod applications such as stabilization, rod fractal

clusters result. For colloids, the measured fractal dimension from

diffusion-limited cluster aggregation is a strong function of

aspect ratio,78 varying from D z 1.8 for spheres to D z 2.2 for

rods of aspect ratio 30. In the second case, flexibility effectively

decreases the rod’s radius of gyration, thereby increasing the

rod’s diffusivity and intrinsic viscosity as well as affecting

relaxation at high frequencies.18

A convenient way to quantify the effects of attractions and

flexibility on rod suspension microstructure is by means of
This journal is ª The Royal Society of Chemistry 2010



Fig. 2 Comparison of the q-dependent scattering intensity, I(q), for the

limiting cases of rod suspension structure: homogeneous rigid rod

networks and heterogeneous rod fractal clusters. The effect of semi-

flexibility on scattering from the homogeneous network is also plotted.

The rigid and semi-flexible homogeneous rod network scattering are each

shown for the particular case of xpore/L ¼ 0.5. For the semi-flexible

network, lp/L ¼ 0.05. For the heterogeneous fractal clusters, xcluster/L ¼
20 and D ¼ 2.1, consistent with literature measurements for r z 10.

Scattering form factors are computed in the Rayleigh–Debye approxi-

mation. Structure factors are computed from the models of Chen and

Teixeira88 and Schurtenberger et al.81 The three curves are offset on the

ordinate for clarity.
scattering measurements. Depending on the size of the rod

building block, X-ray, neutron, and light scattering are poten-

tially applicable. Fig. 2 plots scattering behavior computed for

the limiting cases of heterogeneous rigid rod fractal clusters,

homogeneous rigid rod networks and homogeneous semi-flexible

rod networks. The measured scattering intensity, I(q), is a func-

tion of the scattering vector q ¼ (4p/l)sin(q/2) where l is the

wavelength of the radiation in the scattering medium and q is the

scattering angle. Qualitatively, scattering at some scattering

vector q* occurs by interaction of radiation with structural

features of size l* where l* z 2p/q*. I(q) is the product of the

number density of scatterers, the scattering from an individual

particle, and the scattering due to the effect of collective struc-

ture. Thus, I(q)¼ rF(q)S(q) where r is the number density, F(q) is

the form factor of a single particle, and S(q) is the structure

factor, a measure of the effect of collective structure. The

structure factor quantifies pair correlations. For a suspension

with isotropic structure such as we consider here,

SðqÞ ¼ 1þ 4pr

ð
d rr2 sin qr

qr
ðgðrÞ � 1Þ where g(r) is the radial

distribution function. In Fig. 2 we plot I(q) for the particular case

of rods whose form factor, F(q), can be described by Rayleigh–

Debye theory. In this theory, the form factor, F(q), of a randomly

oriented suspension of rods scales as q�1 for large qL.79,80

Of the three systems, I(q) for the homogeneous rigid rod

network shows the simplest behavior. In this case, the only

structural feature is a characteristic pore size, xpore of the

network, where xpore < L. xpore decreases with concentration.

Thus, as q decreases, the scattering crosses over from a q�1 to
This journal is ª The Royal Society of Chemistry 2010
a Guinier dependence. This crossover tracks a change from

a regime in which scattering from single rods dominates (at high

q) to one in which collective effects dominate (at low q). At low q,

I(q) z 1 � (qxpore)
2.81,82

If the homogeneous network is instead comprised of semi-

flexible rods, then additional functionality is apparent in I(q).81

The qL > 1 scattering of a semi-flexible rod network displays two

scaling regimes. In addition to the q�1 regime characteristic of the

rod geometry, a q�2 regime characteristic of a Gaussian coil is

observed if L < lp < b/2. The crossover between these two regimes

is at qlp z 1. Just as for the rigid case, semi-flexible rod networks

are characterized by a pore size that can be extracted from the

low q scattering of the Guinier regime.

Since F(q) tends to unity for qL � 1, the low q regime is

dominated by the behavior of S(q). In this regime, over large q

ranges, power-law scattering in a variety of rod suspensions has

been observed.78,80,83–87 This scaling is characteristic of scale

invariant, fractal structure. In this case, I(q) z q�D where D is the

fractal dimension of the aggregate. For example, for diffusion-

limited cluster aggregation, D z 2.1 for rods of aspect ratio�10.

Both experiment and simulation indicate that the value of D

varies with aspect ratio.78 This regime spans from qxcluster z 1 to

qL z 1. At qxcluster z 1, the scattering is expected to crossover to

a low-q plateau that reflects the finite size of the fractal clusters.88

For fractal clusters, the cluster size is typically a decreasing

function of the bulk volume fraction.89

Although the general proposal to classify rod structures on

a continuum between fractal clusters and homogeneous

networks appears reasonable, this scheme does implicitly assume

orientational isotropy of the rods. Yet, at number densities r* z
bL2 (or equivalently f* z b/L z r�1), an equilibrium phase with

orientational order appears.18,24,71 However, as we discuss in the

next section, concentration ranges for which elastic, solid-like

rheology are commonly observed appear well below the nematic

transition.

Thus, Fig. 2 provides a basis for characterizing rod micro-

structure from q-dependent scattering. In conclusion, we caution

that a number of additional factors might complicate the general

application of this approach. First, if the rod length is poorly

characterized or if results are not scaled on qL, then dis-

tinguishing between the fractal scaling of aggregated systems and

the q�2 scaling of semi-flexible networks could be difficult.83,85,87

We in particular note that the function plotted for the semi-

flexible rod network in Fig. 2 has also commonly been applied to

polymer-like materials such as micellar solutions. The structural

signatures of these materials, if present, could easily be confused

with that of rods, especially if some flexibility in the rods is

possible.81 Second, for large diameter rods, additional function-

ality in the scattering may be apparent at dimensionless scat-

tering vectors qb > 1, where b is the rod diameter.80 These regimes

would be most likely observed by means of neutron and X-ray

scattering. Third, particle polydispersity could obscure the

crossovers that occur at qxcluster z 1 and qxpore z 1. Fourth, for

small aspect ratios, the scattering vector ranges for which the

different regimes would be observed might be limited. Finally,

hierarchical structures might exist. For example, local nematic

order on small scales might be integrated with structures that are

isotropic on large scales. Such hierarchical structure, and asso-

ciated kinetic pathways,90 would further complicate the use of
Soft Matter, 2010, 6, 1391–1400 | 1395



scattering to classify structure. Examples of systems with hier-

archical structure include those that exhibit bundling, such as

polyamide rods with depletion attractions,91 and nematic

gels.62,65
4 Microstructural components of the dynamical and
rheological response

The structural differences between homogeneous rod networks

and heterogeneous rod fractal clusters highlighted in Fig. 2 have

implications for the dynamical and rheological response of rod

suspensions. For rod suspensions that interact through pair

potentials and experience Brownian motion, the linear rheology

and suspension dynamics are strongly connected, as demon-

strated by approaches such as microrheology.92 Moreover, the

single-particle translational and rotational diffusivities of a sus-

pended rod are a consequence of the rod’s local structural

environment. Two local structural environments, one charac-

teristic of rod networks and the other of rod fractals, are shown

in Fig. 3a and b. In the homogeneous rod network (Fig. 3a), at its

most concentrated, rods have �10 nearest neighbors.93 (The

maximum number of nearest neighbors that avoid the isotropic–

nematic transition in equilibrated systems is about seven.) The

orientation distribution of these rods is isotropic and the pore

space between rods is much less than the rod length, L. In

contrast, fractal clusters of rods formed by diffusion-limited

cluster aggregation (DLCA) represent a limiting case of just two

contacting neighbors (Fig. 3b). Here also the distribution of rod

orientations is isotropic. If the volume fraction is low, the fractal

structure implies the existence of voids in the suspension that are

larger than the rod length.89 Rod suspensions with arrested

dynamics, as would be of interest for rheological modification,

fall intermediate between these two scenarios. Such intermediate

structures could be achieved via two different approaches. One

possibility would be to reduce the concentration of a homoge-

neous rod network, such as shown in Fig. 3a, so that the mean

contact number fell to less than seven. Added pair attractions
Fig. 3 Effect of suspension structure on rod dynamics. The volume

fraction dependent self-diffusivity for suspensions of rods with r ¼ 4, 9

and 30 is estimated from the theories of Edwards and Evans95 (eqn (1)

with C ¼ 1) and Krall and Weitz98 (eqn (2)). Parameters for fractal

clusters are taken from dynamic light scattering measurements of

colloidal boehmite.99 D0 is the translational diffusivity of a rod at infinite

dilution.18
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would stabilize the network, although re-entrant phenomena

could complicate this simple picture. Alternatively, kinetic

processes like aging could lead to local rearrangements of irre-

versibly aggregated structures. These processes would increase

the contact number of DLCA fractal structures, such as shown in

Fig. 3b, above two.

Implicit in Fig. 3a and b is a difference in pair interactions:

Ucontact/kBT� 1 for Fig. 3a, while Ucontact/kBT [ 1 for Fig. 3b.

That is, the neighboring rods shown in Fig. 3 may constrain

single-rod dynamics due to the effects of their excluded volume

(due to packing23,94,95) and/or pair potential interactions (due, for

example, to attractive van der Waals or depletion forces).96

Hydrodynamic interactions between rods may also play

a role.38,40,46 As the effects of packing or attractive interactions on

dynamics increase, single-rod dynamics may be retarded to the

point that rods are effectively localized on scales on the order of

the rod diameter. At this point, arrested dynamics will lead to

effects such as non-ergodicity and elasticity. Consistent with the

literature for spheres, we refer to arrested systems resulting from

packing and excluded volume interactions (as shown in Fig. 3a)

as rod glasses. Rod gels are then systems in which arrested

dynamics occur due to bonding between rods due to attractions,

as per structures such as Fig. 3b. Both gels and glasses differ from

suspensions by their non-ergodicity, which is observable by

methods such as dynamic light scattering.97

As is the case for spheres,52,53 the two limiting cases of

attractive gels (low-volume fraction, strong attractions) and

hard-rod glasses (high-volume fraction, no attractions) are

thought to be connected by a set of arrested structures that are

intermediate in volume fraction and pair interactions. However,

because of the additional parameter of aspect ratio, the set of

possible combinations of structure and dynamics available for

designed response is very great, as discussed in Section 3.

Using the structures shown in Fig. 3a and b, simple models of

single-rod diffusion can be applied to clarify the transition to

arrested dynamics, distinguish between dynamical characteristics

of gels and glasses, and identify effects of aspect ratio. Edwards

and Evans95 considered the diffusion of a test rod in a hard-rod

network. A key result of their work is that the excluded volume

effects of neighboring rods begin to significantly retard single-

rod translational diffusion at volume fractions f z r�1. The

diffusivity, scaled on the result for a free rod, is:

DðfÞnetwork

D0

¼ 1� C

�
4fr

p

�3=2

(1)

The functional form, particularly the scaling power of 3/2, leads

to an abrupt onset of arrested dynamics, as plotted in Fig. 3c for

the characteristic aspect ratios of 4, 9, and 30. The glass transi-

tion is progressively shifted to lower volume fractions with

increasing aspect ratio. The origin of this shift rests with the

characteristic scaling fglass z r�1. (Note that the particular values

of fglass at each aspect ratio are determined by the magnitude of

C in the equation.) It is significant that the aspect ratio depen-

dence of the rod glass transition implied by eqn (1) is identical to

the scaling of the isotropic–nematic phase transition. Thus,

vitrification and equilibrium nematic order in hard rods are

expected to occur in approximately the same range of colloid

volume fractions.
This journal is ª The Royal Society of Chemistry 2010



To illustrate arrested dynamics in fractal structures of rods,

consider the model for internal dynamics of fractal clusters due

to Krall and Weitz.98 A key feature of this model is stretched

exponential dynamics. These dynamics are increasingly retarded

as volume fraction increases because internal cluster dynamics

become increasingly localized. Because fractals are scale-

invariant structures, the exact details of the monomer shape are

not key to this description, so we here apply the model to

investigate the dynamics of structures such as that shown in

Fig. 3b. (Indeed, the model describes the time-dependence of the

dynamic structure factors of rod gels very well;99 however, the

volume fraction dependence of model parameters is significantly

different from spheres.) To facilitate comparison to the dynamics

of rod glasses, we construct an effective diffusivity from a char-

acteristic localization length and fluctuation time of this model.

In this case:

DðfÞfractal

D0

¼ d2ðfÞ
6sðfÞ

�
1

D0

�
(2)

where d2(f) is the maximum mean-squared displacement of rods

in the fractal cluster and s(f) is the relaxation time of the initial

decay constant in the dynamic structure factor. To illustrate

behavior we assign the parameters of eqn (2) from the

measurements of Mohraz and Solomon99 for boehmite rod gels

(r ¼ 4, 9 and 30) whose measured structure factors were

consistent with fractal scaling78 as per the theories discussed in

Section 3. As for the case of rod glasses, rod fractal gels exhibit

retardation in dynamics as volume fraction is increased.

However, the scaling of dynamics obeys a more gradual power-

law in f, rather than the abrupt downturn observed for the rod

glass. The power-law behavior in f is consistent with the

underlying fractal structure. Thus, for rod fractal gels, there is no

abrupt transition to arrested dynamics, as predicted by the

Edwards and Evans theory95 of packing effects on rod diffusion.

Fig. 3c yields predictions about rod gelation and vitrification that

could be explored by experiment, including the volume fraction

scaling of the two transitions with aspect ratio. The particular

functional forms of the volume fraction dependent dynamics of

rod glasses and gels have likewise yet to be examined by exper-

iment. Finally, just as discussed in the previous section on

structure, the two different signatures of dynamical arrest

reported in Fig. 3 represent limiting cases. Inspection of Fig. 3

shows that rod fractal gels and homogeneous network glasses are

separated by orders of magnitude in volume fraction. The effect

of rod anisotropy, as parameterized by aspect ratio, is to shift

gelation and vitrification points in a way that provides an addi-

tional tool to design solid-like rheology. We discuss the impli-

cations of this shift in the next section.
Fig. 4 Map of the volume fraction, aspect ratio space of rod suspen-

sions, gels and glasses for which elasticity has been reported. Shown are

data from a wide range of disciplines along with the relevant scaling

relationships that bound the physical domains of rod disper-

sions.32,65,81,83,91,98,99,101,104,108,109,113,125–130 From top to bottom, the curves

plotted are eqn (3)–(5) of the text.
5 Geometric commonalities of rod networks

Because broadly applicable models relating microstructure to

rheology in rod suspensions are currently lacking, it is valuable to

investigate commonalities among the different rod systems in

Fig. 1. One unifying feature of rod systems is their seeming ability

to form space-filling networks and efficiently create elasticity and

a solid-like rheological response at lower volume fractions than

more isotropic shapes. This advantage of rods is economically
This journal is ª The Royal Society of Chemistry 2010
significant for commercial applications like composite materials

and consumer products.100,101

To examine this feature, in Fig. 4 we plot the volume fraction

and aspect ratio of a number of rod suspensions whose elastic,

solid-like rheology has been reported in the literature. The data

in Fig. 4 include experimental results that span the nanometre,

colloidal, and granular length scales and which are drawn from

a diverse range of materials, applications, and disciplines. All

data have been selected as examples where the formation of

a network is directly measured or inferred by bulk behavior such

as the existence of a yield stress. In some cases, authors reported

volume fractions calculated geometrically, while others accoun-

ted for ionic and excluded volume effects, while some reported

mass fractions that we converted to volume fractions by esti-

mating material properties such as density. Also shown in Fig. 4,

at r ¼ 1 on the y-axis, are representative data for gels and glasses

of colloidal spheres. Fig. 4 offers a holistic picture of geometric

packing limits for a broad range of rod microstructures. It is

subject to the limitation that pair potential interactions are not

explicitly mapped; this extension would require a three-dimen-

sional space of volume fraction—aspect ratio—pair potential.

Nevertheless, we recommend that it be used to rationalize and

design rod microstructures from materials of interest.

In Fig. 3, we discussed the distinction in dynamics between rod

glasses and gels. The packing and contact number ideas implicit

in the Edwards and Evans model of the rod glass transition have

been further explored by Philipse and co-workers.93,102,103 These

results produce bounds on expected behavior in the (f, r) space

of Fig. 4. For example, the rod glass regime is bounded on the

top by the maximum geometric packing fraction of isotropic

rods,
Soft Matter, 2010, 6, 1391–1400 | 1397



fmaxz
5:4

r
; (3)

as determined by scaling arguments combined with experimental

results for granular rods.93,104 In addition, the isotropic–nematic

transition for rods24 closely tracks eqn (3)—the two lines differ by

only a constant in the random contact theory. The microstruc-

ture of rod suspensions in the glass regime is that of the random

homogeneous rod networks discussed in Fig. 2 and 3. This

regime may include frictional granular structures.104,105

The lower bound of the glass region may be taken as the

minimum percolation volume fraction of a random homoge-

neous network of rods:

fglassz
0:7

r
(4)

determined by scaling and simulation102,106,107 and in suitable

agreement with the Edwards and Evans95 prediction of the

dependence of the dynamical arrest volume fraction with aspect

ratio (C z 1 in eqn (1)). Both eqn (3) and (4) arise from

considering the random contact of rod pair excluded volumes

and are thus valid in a high aspect ratio limit.

Eqn (3) and (4) plotted in Fig. 4 have been extended to low-

aspect ratios, using dashed lines, to yield consistency with known

spherical results. The upper limit of eqn (4) is extended by means

of simulated prolate ellipsoid results,108 and classical observa-

tions109 have been used to extend the lower limit to r ¼ 1. The

lower dashed line also roughly agrees with theoretical and

simulation results of the rod glass transition.110,111 However, the

interesting non-monotonic behavior of random packing limits in

the vicinity of 1 < r < 2 suggests that these extrapolations be used

with care in this aspect ratio range.108,112

The region above eqn (3) does not admit packings with disor-

dered structure. Alternatively, below the eqn (4) curve, rods are

not sufficiently crowded to arrest due to excluded volume inter-

actions alone and attractive interactions are required for the

colloids to form a connected structure; the resultant heteroge-

neous structures may be fractals,78 bundles,91 and other non-

random shapes that might result, for example, from spinodal

decomposition. Alternatively, if attractions are insufficiently

strong, then below the eqn (4) boundary rod suspensions will

display ergodicity and dispersed-phase rheology. Also shown on

the plot is the semi-dilute limit for the dynamics of rod suspen-

sions:49

fsemi-dilute z
24

r2
(5)

This limit, which quantifies the region for which pair effects on

suspension dynamics are observed, scales as the inverse of the

aspect ratio squared. We note that denser structures like nematic

and smectic liquid crystals (and, possibly, glasses of these

structures) exist above the eqn (3) line and that the sharp

boundaries represented by eqn (3)–(5) might be blurred by non-

idealities such as rod semi-flexibility or polydispersity.

Eqn (3) and (4) group the available data in a useful way. First,

none of the data falls above the eqn (3) limit. Second, many of the

data cluster between the limits of eqn. (3) and (4). From the latter

result, we may conclude that the generation of elasticity by the

arrest of homogeneous fiber networks is widespread. The part of

the diagram below eqn (4), which corresponds to low-volume
1398 | Soft Matter, 2010, 6, 1391–1400
fraction gels formed by strong attractive interactions, is much

less well populated. Nevertheless, it appears that by judicious

design of attractive interactions, the lower region of Fig. 4 ought

to be accessible. In fact, at the very bottom of the diagram, we

expect to find a conceptual lower limit to the rod gel region.

Below this limit the number concentration of rods would be

insufficient to form a heterogeneous connected structure that

could withstand either Brownian or gravitational stresses.

Knowledge of such a limit would be economically relevant to

production of, for example, cost-effective conducting networks

of carbon nanotubes. A lower gelation limit was found for

spheres by Manley et al.113 for density-matched latex colloids

aggregated in microgravity into fractal gels: fsph,min z 3 � 10�5.

We would expect rods to display some such limit, though perhaps

of a different magnitude. Although this conjecture has not yet

been addressed, it has been observed that the degree of dynam-

ical arrest of rod gels increases with aspect ratio at fixed volume

fraction.99 This result is consistent with the idea of a smaller

minimum rod gelation limit for rods than for spheres. However,

the lowest volume fraction rod gels we know of99 are no lower

than the limit found by Manley et al.113 Even if sphere and rod

systems were found to possess similar minimum gelation

thresholds, the magnitude of the contribution of rod to gel

rheology appears to increase significantly with increasing aspect

ratio at fixed volume fraction.26,86,101 Because the comparison

between weak gels of rods and spheres is unclear, there is a need

for systematic studies of these lower limits that assess aspect ratio

effects and compare to literature results for spheres.

Most of the literature from which Fig. 4 was generated placed

little emphasis on identifying the minimum volume fraction at

which arrested dynamics occurred. Instead the concentrations

reported were usually ones at which gelation was guaranteed.

However, the economics of rod networks will increasingly drive

optimization toward systems that minimize material usage. No

matter the application focus, the gaps in Fig. 4 demonstrate the

need for systematic study of the limits and complexity of the

volume fraction–aspect ratio–pair potential phase space for

arrested dynamics of rod systems.
6 Conclusions

Increasing the aspect ratio of a suspended colloid is a powerful

means for fluid rheological modification that is used by nature,

researcher, and industrialist alike. This review has focused on

identifying the range of microstructures possible in rod suspen-

sions and the implications of those microstructures for transi-

tions in arrested dynamics and rheology. It appears that the field

is somewhat fragmented and that interdisciplinary connections

remain to be realized. Here we have highlighted areas of

universality while acknowledging a range of unresolved ques-

tions of fundamental importance. Just as reported earlier for

spheres, in which the nature of the arrested dynamics transition

can vary from bonded gels (with heterogeneous fractal structure)

to caged glasses (with homogeneous amorphous structure), so

too may rods form structures that vary from homogeneous fiber

networks—rod glasses—to heterogeneous fractal clusters—rod

gels. The additional complexity addressed in this review is the

effect of aspect ratio. At high aspect ratio, rod glasses may form

due to caging and packing constraints at seemingly low-volume
This journal is ª The Royal Society of Chemistry 2010



fractions (e.g. fglass is as small as 0.02 at r z 30 as per Fig. 4).

Here we have argued that rod suspensions may adopt

a progression of structures and dynamics between the two limits

of hard-rod packings and fractal clusters formed due to strong

attractions. This progression from glass to gel in rods has

received little fundamental attention. Yet, as shown in Fig. 4, it

represents a large parameter space in which different types of

arrested dynamics might well be generated through different

combinations of volume fraction and aspect ratio.

As the field seeks to extend the state of the literature as

summarized in this review, three directions are apparent. First,

each datum point in Fig. 4 represents a gel or glass state gener-

ated by certain pair potential interactions (parameterized, for

example, by Ucontact/kBT). Apart from the location of the hard-

rod glass transition (which itself has not been completely iden-

tified), little is known of the magnitude of attractions required to

generate the gel and glass states in the interior of Fig. 4. Second,

even given knowledge of the location of gel and glass boundaries

in Fig. 4, the rheological signatures that characterize them are

largely unknown. The qualitatively different volume fraction and

aspect ratio dependencies of local rod dynamics (cf. Fig. 3)

suggest that gels and glasses will have quite different linear

viscoelasticity. Third, the fundamentally different mechanisms

for arrested dynamics in rod gels and glasses (bonding versus

packing) and the very different microstructures (heterogeneous

fractal clusters versus homogeneous fiber networks) suggest the

hypothesis that non-linear rheological properties such as yield

stress, shear thickening, and stress relaxation will vary

profoundly within the parameter space delineated by

Fig. 4.86,101,114,115
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