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Abstract:

Using X-ray microcomputed tomography (micro-CT) as a 3D microstructural analysis tool elucidates 

the time evolution of foam Plateau borders and nodes, providing unprecedented vision of foam 

dynamics. Deep learning facilitates the capability by allowing for quantifiable images to be collected 

at the time scale of five minutes. The stability mechanism of microfibrous cellulose is assessed 

demonstrating that trapping of fibers in the foam structure results in a critical concentration that 

marks an arrested foam. The mechanism of arrest is explained by 3D structural information 

extracted from micro-CT and confocal laser scanning microscopy images demonstrating the 

entanglement of cellulose fibers. A detailed analysis of the micro-CT data is provided to substantiate 

the quantitative nature of the digital images and assess advanced deep learning approaches. It is 

demonstrated that deep learning allows for the dynamic imaging of liquid foams whereas traditional 

data processing approaches cannot capture accurate geometrical information of foam structure.
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1. Introduction

Laboratory-based microcomputed tomography (micro-CT) is a powerful technique to visualize 

porous systems in 3D with high spatial resolution on the order of a few micrometres (Bultreys et al., 

2016; Di Michiel et al., 2005). Bench-top micro-CT systems provide a non-invasive, relatively 

affordable tool to investigate how the 3D internal structure of a material evolves under different 

external conditions. As such, micro-CT is becoming an indispensable technique for the study of 

porous materials that significantly impact a wide range of industries, such as petroleum (Cnudde and 

Boone, 2013; Wildenschild and Sheppard, 2013), mining (Wang and Miller, 2020), food sciences 



(Schoeman et al., 2016) and the medical industry (Ritman, 2011; Swain and Xue, 2009). 

Nevertheless, image acquisition times for bench-top micro-CT systems are sufficiently high, on the 

order of minutes to hours (Bultreys et al., 2016), which makes it challenging to study short-lived, 

fast-aging dynamic systems, such as liquid foams that may not sustain or remain static during 

relatively long scan times.  

The stability of liquid foams is of paramount interest to a wide range of engineering applications, 

such as enhanced oil recovery (Rossen, 2017), mineral processing (Matis and Mavros, 1991), 

personal care products (Arzhavitina and Steckel, 2010), and food and beverage manufacturing 

(Dickinson, 2010). Traditionally, foam stability is evaluated via observing the bulk foam structure 

from the top or side of a glass column, which can be inaccurate due to wall effects (Cheng and 

Lemlich, 1983; Papara et al., 2009) and provides only a limited view of the foam structure. Whereas 

how the 3D foam structure evolves over time is important for the understanding of the aging 

dynamics, which plays a pivotal role in determining product performance and process efficiency 

(Farrokhpay, 2011; Gonzenbach et al., 2006; Rossen, 2017). 

Foams are intrinsically unstable systems that undergo destabilization via three main mechanisms: (1) 

coalescence (Cho and Laskowski, 2002; Langevin, 2015), (2) inter-bubble gas diffusion (also known as 

diffusive coarsening or Ostwald ripening) (Gandolfo and Rosano, 1997; Stevenson, 2010), and (3) 

gravity drainage (Kruglyakov et al., 2008; Verbist et al., 1996). Specifically, it is vital to study foam 

drainage as both coalescence and diffusive coarsening processes rely on the film thickness, which is 

determined by the drainage rate (Bhakta and Ruckenstein, 1997; Weaire and Hutzler, 2001). Thinner 

films are easier to rupture, therefore, easier to coalesce (Briceño-Ahumada et al., 2016; Carrier and 

Colin, 2003). On the other hand, inter-bubble gas diffusion is faster via thinner liquid films 

(Hilgenfeldt et al., 2001; Hutzler and Weaire, 2000). Conventionally, foam drainage is studied in two 

dimensions using various techniques, such as the pressure drop technique (Exerowa and Kruglyakov, 

1997), forced drainage method (Weaire and Hutzler, 2001), free drainage technique (Koehler et al., 

2000; Stone et al., 2002), or using the Plateau border apparatus (Pitois et al., 2005). However, these 

experimental techniques do not provide information on how the 3D structure of the foam evolves 

during the drainage process. Hence, a detailed understanding of foam drainage in 3D is crucial for 

accurate modelling and simulations of foam aging mechanisms that determine its stability. 

Foam drainage can be slowed down via addition of rheological resistance to the liquid phase. 

Addition of nano-particles (Arriaga et al., 2012; Hunter et al., 2009; Stocco et al., 2011a), polymers 

(Alargova et al., 2004; Bureiko et al., 2015), food proteins (Damodaran, 2005; Graetz et al., 2020; 

Hailing and Walstra, 1981), and viscous liquids, such as glycerol (Briceño-Ahumada et al., 2016; Muin 



et al., 2020) are common ways of achieving foam stabilization via increasing the bulk viscosity of the 

liquid phase. However, a major disadvantage with these methods is the high concentration of 

particles required to achieve stabilization, which can be costly, and cause a nuisance during 

manufacturing processes (Lam et al., 2014). 

The study of microfibrous cellulose (MFC) liquid foams can be advantageous as it has scope for 

progress in a wide range of applications. Aqueous MFC is a non-Newtonian fluid that consists of 

cellulose microfibers that can impart a yield stress while retaining a relatively low viscosity (Solomon 

and Spicer, 2010). MFC sourced from bacteria is pure cellulose, whereas plant-based MFC is a 

mixture of lignocellulose and cellulose, and has attracted various patents (Charreau et al., 2013) for 

use in the food industry, and the paper and pulp industry due to its non-toxic, biodegradable, and 

strong mechanical properties (Kontturi et al., 2018; Lavoine and Bergström, 2017). However, to the 

best of our knowledge, there are only two studies that focuses on how cellulose microfibers 

influence the bulk stability of liquid foams (Cervin et al., 2015; Xiang et al., 2019b). The results from 

these studies highlight that the high aspect ratio of the MFC contributes to its exceptional foam 

stability on the order of days. However, a detailed microscopic analysis of the foam aging 

mechanisms that contributed to the exceptional stability was not conducted.

Laboratory micro-CT systems are traditionally an uncommon choice for scanning fast aging foams 

due to the requirement that samples remain static during the scan time (Barrett and Keat, 2004; 

Boas and Fleischmann, 2012). Due to this limitation, micro-CT has only been previously used to study 

liquid foams using synchrotron sources (García-Moreno et al., 2017; Lambert et al., 2005) that 

provide fast acquisition times, ultra-stable foams made up of relatively inert gases (Meagher et al., 

2011) or nano-particle stabilized foams (Stocco et al., 2011a), which do not undergo drainage during 

the scan time. Synchrotron X-ray sources are limited in number and involve exceptionally 

high operational costs in comparison to benchtop systems, which are much more accessible. The 

scan times of benchtop systems can be tuned to reduce movement artifacts; however, if the scan 

time is too short, it can lead to a low signal-to-noise ratio (SNR) (Bultreys et al., 2016). Ultimately the 

SNR determines the image quality and the extent to which quantitative data can be extracted from 

the images. So, the challenge is to develop an approach using micro-CT that can provide high enough 

quality images of dynamically aging foams such that relevant foam aging metrics can be extracted 

from the digital images. Thus, MFC is chosen for this foam study as it has fast dynamics in 

comparison to traditional particle-stabilized foams and is a good example of a sustainable material 

that is relatively less viscous but can still stabilize a foam. 



To address this challenge, we propose the use of convolutional neural networks (CNNs) built within a 

deep learning platform (Da Wang et al., 2020; Jiang et al., 2018; Niu et al., 2020; Shelhamer et al., 

2017; Tamada et al., 2020; Wang et al., 2021; Xiang et al., 2019a) to employ accurate segmentation 

of dynamic foam images that have a low SNR. The CNNs investigated in this study rely on supervised 

learning from ground truth (GT) data to accurately identify the pixel distributions at the air-liquid 

interfaces. With this effort, the utility of bench-top micro-CT systems can be enhanced despite its 

known limitations regarding image quality and scanning time. Overall, this study presents a novel 

approach to study dynamic MFC foams using laboratory micro-CT systems and CNNs to enable 

accurate image segmentation and extraction of geometrical metrics relevant to foam aging that are 

inaccessible with traditional techniques. 

2. Methods and materials

Figure 1 illustrates the experimental workflow undertaken to characterize the dynamics of liquid 

MFC foams. Firstly, a preliminary bulk foam study at MFC concentrations 0.025% and 0.05% was 

carried out to observe how the foam evolves after generation to determine suitable aging times. 

Next, fast 5-minute scans were imaged at selected aging times (t) using a standard bench-top micro-

CT system. However, since these images had low SNR, segmentation was carried out to test the 

applicability of current machine learning approaches. Finally, the segmented binary foam images for 

the two MFC concentrations were analysed to gain an in-depth understanding of the stabilization 

mechanism of MFC.



Figure 1: Experimental workflow for evaluating the foam dynamics of fast-draining liquid foams 
using a benchtop micro-CT system. The short 5-minute micro-CT scans were segmented via a 
machine-learning approach to minimize errors due to low SNR. The output binary images were then 
analyzed to evaluate the foam dynamics for MFC concentrations 0.025% and 0.05% and gain insight 
into the stabilizing mechanism of MFC. 



2.1 Evaluation of bulk foam stability

The bulk foam stability was assessed for MFC concentrations of 0.025% and 0.05% by weight. These 

concentrations were considered suitable as the MFC foams become bubbly liquids (i.e. ϕ> 0.36) at 

concentrations close to 0.1% (Saint-Jalmes, 2006). This is due to the high water retention ability of 

MFC (Nakagaito et al., 2009) and the significant yield stress of MFC at these relatively low 

concentrations (Song et al., 2019a). The MFC foams were prepared using 6 g/L Sodium dodecyl 

sulfate (SDS), 1:6 m/m% Sodium iodide, and 0.85 g/L Octan-1-ol purchased from Sigma Aldrich, and 

desired concentration of microfibrous cellulose (MFC) dispersion. The stock MFC dispersion was 

prepared by first rinsing the bacterial cellulose samples (Wong Coco, Indonesia) with deionized 

water, and then coarse blending using a laboratory blender (Sunbeam, Australia). Next, the blended 

sample was homogenized for 5 minutes using a T18 digital Ultra Turrax homogenizer, IKA, and 0.5 ml 

of Kathon (Supelco, USA) preservative was added to approximately 0.4% cellulose to prepare the 

stock MFC dispersion. This procedure is similar to Song et al. (2019a, 2019b). Finally, deionized water 

was added to achieve the desired MFC concentrations in the foam solution.

Initially, SDS and NaI salt were mixed with deionized water and sonicated for 15 minutes to allow all 

solids to dissolve. Next, Octan-1-ol and MFC in the required proportions were pipetted into the 

surfactant-salt solution. The resulting solution was mixed with a Ratek vortex mixer set at 2500 RPM 

for 1 minute to prepare a homogenous foam solution. Finally, the foams were prepared using the 

Bartsch method (Bartsch, 1924) by constantly shaking the samples for 1 minute. 

Three replicates were prepared for the two concentrations of MFC foams and closely monitored 

using a high-resolution camera (Moticam 10MP, Motic) by capturing one frame per 3.5 minutes over 

100 hours. The time-lapse images were then imported to Fiji software (Schindelin et al., 2012) to 

measure the foam volume (Vf) over time to evaluate stability. The bubbly liquid zone and foam zone 

are difficult to distinguish using standard thresholding. Thus, WEKA segmentation (Arganda-Carreras 

et al., 2017) was used for more accurate identification of the foam area, which was then used to 

calculate the foam volume for the time-lapse images. 

2.2 Acquisition of dynamic micro-CT images

The bench-top Heliscan micro-CT equipment at the University of New South Wales Tyree X-ray 

imaging facility was used to collect time-lapsed images of the foam dynamics. The micro-CT system 

consists of a Phoenix Nanofocus tube with a diamond window and a high-quality flatbed detector 

(3072x 3072 pixels, 3.75 fps readout rate). Identical preparation method as Section 2.1 was used to 

prepare the foam samples, and sequential micro-CT images were collected using 5-minute scan 



times with a lag time of 1 minute between imaging, i.e. temporal resolution of 6 minutes. Multiple 

images with a spatial resolution of 5.5 µm were collected at early and late aging times for both 

0.025% and 0.05% MFC foams. Each scan was obtained using a circular trajectory with the scan 

parameters specified in Table 1.

Table 1: Scan parameters used for dynamic micro-CT imaging

Description Scan parameters

Voxel size (μm) 5.55 

Filter used 1 mm Aluminium

Voltage (kV) 80

Current (μA) 82

Exposure time (s) 0.43 

Number of accumulations 1

Scan duration (minutes) 5 

Number of projections 800

Sample position for imaging ~2 mm above foam-liquid interface

Height of image (mm) 6.98 

2.3 Segmentation via machine-learning approach

To ensure accurate segmentation of the dynamic foam images, we firstly determine the best 

performing CNN for this task by comparing commonly used network architectures, such as U-Net, U-

Resnet, and EfficientU-net. CNNs depend on supervised learning, which means that the architectures 

need to be trained using data. Due to the lack of actual foam ground truth (GT) data, we created GT 

data using a manual segmentation method that provides identification of the respective phases yet 



remains impractical to implement for an entire 3D image; the details are provided in the next 

section. 

To determine which network is performing well and whether it performs better than traditional 

segmentation, quantitative analyses were carried out using three 2D GT slices of 1000x1000 pixels to 

compare the Euler characteristic (χ) of the connected liquid phase, total bubble area (Ag), and total 

liquid film area (Al). The χ indicates connectivity (Michielsen and De Raedt, 2001; Ohser and 

Mücklich, 2000) and is calculated as 

χ = objects ― loops + cavities. 1

For measuring χ of the liquid foam phase, the number of objects is always one and there are 

physically no cavities, and the number of redundant loops consist of the number of unique complete 

paths that can be formed around the air phase. 

In addition to the bulk analyses, a region-based accuracy was also determined to assess where the 

foam interfaces are segmented correctly. To do this, the binary outputs generated from the CNN 

were subtracted from the GT data to determine the misclassified regions. These subtracted output 

images were then multiplied by the Euclidean distance map of the GT data, which assigns a distance 

value to each voxel in the image based on its distance from an interface. Then the frequency 

distribution of misaligned voxels with respect to distance from the nearest interfaces was 

determined in 2D. This is performed since interface regions are often the most difficult to segment, 

and thus a defining feature of any given segmentation approach would be how well the interfaces 

are resolved (Sheppard et al., 2004). This is particularly important for the study of foam systems, 

where interfacial forces play a dominant role in the dynamics (Pugh, 1996).  

2.3.1 Preparation of manually segmented GT data

Two sets of GT images were prepared for (1) training and (2) validation. For the manual 

segmentation, interfaces were manually fed into the WEKA classification tool (Arganda-Carreras et 

al., 2017) to minimize unavoidable human errors in the manual segmentation. All the interfaces 

were manually drawn and fed into the classifier for generating highly accurate GT slices. The pixels in 

the image were then manually selected to remove any wrongly identified phases. While the 

approach does introduce human bias, the overall quality of the segmented images can be seen in 

Figure 2. As observed in Figure 2, the interfaces are well resolved and representative of the foam 

system. 



For training data, greyscale 2D slices with the least movement, i.e., less blurry or fewer double-

edges, were cropped and manually segmented using WEKA segmentation. This was done to 

minimize errors due to poor user judgment in generating the manual GT data. The GT slices used for 

training were of non-uniform sizes but comprised of a total area of 5.4x 106 pixels. 

For the validation data, a total area of 3x106 pixels, i.e., three 2D slices of 1000x1000 pixels, were 

selected from three vertical elevations: top, middle, and bottom, as the drainage dynamics and the 

extent of motion artifacts are likely to vary with elevation for the 3D image. Therefore, using three 

different heights allows us to evaluate the performance over the entire range of possible image 

quality, and thus evaluate how well the CNNs perform across the entire 3D dataset.   

Figure 2: Generation of synthetic GT data via WEKA segmentation of a noisy 5-minute foam scan. An 
increasingly high number of interfaces were manually fed into the WEKA classifier to enhance 
accuracy of the manual segmentation.

2.3.2 Traditional segmentation with non-local means and watershed 

Three 2D slices were also processed using a non-local means (NLM) filter (Buades et al., 2005) 

followed by watershed segmentation (Vincent and Soille, 1991) in Avizo™ to provide a baseline 

comparison to the CNN-generated data. This traditional method was specifically chosen as it 

provides the highest visual accuracy compared to other filtering steps and thresholding methods 



available in the Avizo™ software for the given dataset. Generally, the NLM filter is effective for 

denoising a wide range of image noise common for X-ray micro-CT techniques (Buades et al., 2011; 

Manjón et al., 2008; Sarker et al., 2012), while watershed segmentation is advantageous as it 

provides relatively fast, accurate boundary results with minimal user interference (Schlüter et al., 

2014).

2.3.3 Training schedule

The training dataset was cropped into 1180 sub-slices of 96x96 pixels. The slices were split into 960 

for training and 240 for testing. Validation was then performed using 2D GT to compare the resulting 

geometrical measures of the resulting foam structure. The batch size was set to be 16 image slices. 

All networks were trained for 200 epochs with an initial learning rate of 0.00001, which is halved if 

the accuracy is not improved in 80 epochs. Adam solver was selected as the optimizer and cross-

entropy loss was used as the loss function

𝑐𝑟𝑜𝑠𝑠 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑙𝑜𝑠𝑠 = ― ∑𝑋

𝑘 = 1
(𝑝𝑘𝑙𝑜𝑔𝑞𝑘),

where p is the GT target in scalar, q is the prediction output after softmax function, and X is the 

number of labels. The training was implemented in PyTorch, using a Nvidia RTX 3090 Graphic 

Processing unit. 

2.3.4 U-Net segmentation

U-Net (Ronneberger et al., 2015) has a symmetric encoding-decoding structure that is widely used 

for image-to-image translation. The long skip connection in U-Net is utilized to link the encoding 

layers to their corresponding decoding layers by concatenation, which is beneficial for retaining 

shallow features of input images. Therefore, U-Net is used in this study for CNN-based segmentation 

of foam grayscale images. The basic structure of U-Net is shown in Figure 3. Overall, the U-Net 

network contains 7.7 M trainable parameters with a calculation size (indicating the 

forward/backward pass size) of 109 MB.



Figure 3: Architecture of symmetric encoding-decoding U-Net, containing long skip connection 
linked between encoding layers to decoding layers. The input image contains three channels, and 
the output has two channels, indicating foam phase and background.

2.3.5 U-ResNet segmentation

U-ResNet is an extended network of U-Net with residual skip connections. The short skip connection 

is one of the primary reasons why ResNet outperforms other network structures in image 

classification (He et al., 2016). Therefore, U-ResNet takes the advantages of both the long skip 

connection used in U-Net and the short skip connection used in ResNet, as shown in Figure 4. U-

ResNet contains an encoding step and a decoding step, including 4 encoding blocks that extract 

different levels of features from the input image and 4 decoding blocks that transpose these 

features into the segmented output image. Shallow features are then retained by the skip 

connections. Overall, the network contains 8.2 M trainable parameters, and the calculation size 

(indicating the forward/backward pass size) is 138 MB.



Figure 4: Architecture of U-ResNet, containing both short skip connection (Residual block) and long 
skip connection. The input image contains three channels, and the output has two channels, 
indicating foam phase and background. 

  

2.3.6 EfficientU-net segmentation

Apart from the encoder-decoder symmetric network, EfficientU-Net is an encoder-decoder 

asymmetric structure that uses a network pre-trained on ImageNet for image classification and 

feature extraction. In this study, a state-of-art pre-trained EfficientU-Net (Tan and Le, 2019) with its 

advantage of high training efficiency by balancing network depth, width, and resolution, is used as 

the feature extractor. During the decoding step, a concept like U-Net and its long skip connection is 

used to transpose features back to the segmented output image. Therefore, the overall encoder-

decoder asymmetric network is used to test its segmentation performance. The network 

architecture is shown in Figure 5. The total trainable parameters are 32 M. However, due to its high 

efficiency, the calculation size (indicating the forward/backward pass size) is 86 MB, which is only 

62% of U-ResNet. 



Figure 5: Architecture of EfficientU-Net-B3. The encoder contains several MobileNet blocks. The 
decoder contains several upsampling layers with long skip connections between encoding layers.

2.4 Foam quantification

The bubble volume and liquid fraction of the 3D binary segmented images for the two MFC 

concentrations and various aging times were measured in Avizo™. The liquid fraction (ϕ) was 

measured on the raw segmented images. However, to measure bubble size, the conjoint air bubbles 

due to resolution limitations, i.e. partial volume effect (Clausnitzer and Hopmans, 1999), were 

separated using the “separate objects” tool, and the “opening” filter was applied to remove any 

objects with less than 3 pixels to minimize error in bubble size measurements due to noise. Finally, 

the “label analysis” function was used to measure the bubble volume (V). Since most of the bubbles 

were highly spherical, the bubbles were assumed to be fully spherical, the volume-equivalent 

diameter (di) was calculated as



.𝑑𝑖 = 3 6𝑉 
𝜋

2

The volume-equivalent diameters (di) were then used to calculate the Sauter mean diameter (d32). 

The d32 for the total number of bubbles N present in the foam structure is calculated as

.𝑑32 =
∑𝑁

𝑖 = 1𝑑3
𝑖

∑𝑁
𝑖 = 1𝑑2

𝑖

3

Also, the Plateau border diameter ( ) and node radii ( ) of the 0.025% and 0.05% MFC foams 𝐷𝑃𝐵 𝐷𝑛𝑜𝑑𝑒

were estimated from the micro-CT images using pore network extraction (Muin et al., 2020).  

Implementation of pore network modelling (PNM) on the segmented liquid phase of the foam image 

provides spherical pores that correspond to foam nodes, and cylindrical connections that correspond 

to Plateau borders (PB) distributed across the foam structure, as shown in Figure 6. 

Figure 6: Application of pore network modelling (PNM) to estimate the size of Plateau borders and 
nodes 

Lastly, confocal images and liquid rheology measurements of the MFC foam samples at 0.025% and 

0.05% were obtained to help explain the bulk and microscale observations made. The confocal scans 

were acquired using the Zeiss LSM 880 inverted confocal laser scanning microscope (CLSM) that 

utilizes an Airyscan module, while the liquid rheology measurements were obtained using the 

Discovery HR-1 hybrid rheometer for the two MFC concentrations. 



3. Results

The fast-aging dynamics of the MFC foams are evaluated by implementing EfficientU-net 

segmentation. Firstly, quantitative findings that justify the usage of EfficientU-net are covered 

followed by a 3D microscopic study of the foam dynamics. The unique stabilization mechanism of 

MFC foams is elucidated along with the identification of the dynamic aging mechanisms that occur 

prior to the foam being arrested by the MFC. 

3.1 Bulk stability of MFC foams

High-resolution time-lapse images were used to identify how the bulk foam evolves with respect to 

foam aging time. It is evident from that as the MFC foams drain, the foam-liquid interface moved 

upwards as liquid accumulated at the bottom of the foam phase. However, the position of the foam-

liquid interface in 

Figure 7 remained static after approximately t= 0.25 h and t= 0.5 h for the 0.025% and 0.05% MFC, 

respectively. At this point, a balance between drainage and capillary forces was achieved and an 

equilibrium liquid distribution profile was established (Magrabi et al., 2001; Neethling et al., 2005). 



This compared well with the theoretical free drainage times (Rio et al., 2014) of 0.27 hours and 0.58 

hours (see Appendix 7.1) for the 0.025% and 0.05% MFC foams, respectively. 

Figure 7: Time-lapse images of the bulk foam between t= 0 to 5 hours with MFC concentrations of 
0.025% and 0.05%. The position of the foam-liquid interface remains relatively static after free 
drainage has completed at approximately t= 0.25 hours and 0.5 hours for the 0.025% and 0.05% 
MFC foams, respectively.   

Average foam volume (Vf, avg) versus t, based on 3 replicates, is provided in Figure 8 based on 

quantitative analysis of the images in Figure 7. For both 0.025% and 0.05% MFC foams, a rapid 

decrease in Vf, avg over t was observed within the initial 0.5 hours of aging in Figure 8. This 

observation corresponds well with the theoretical free drainage times reported in Appendix 7.1 and 



the bulk foam stability observed in 

Figure 7. After the free drainage regime is completed, a steady decrease in Vf, avg versus t was 

observed that appears to be non-linear. In this intermediate regime, the rate at which Vf, avg 

decreases also declines. Finally, the foams are considered arrested when the Vf, avg remains relatively 

constant. This point is defined as the earliest time at which Vf, avg decreases no more than 0.1% over 

30 minutes (see Figure 8). Thus, the time taken for the 0.025% and 0.05% MFC foams to fully arrest 

was calculated as 84.3 hours and 26.5 hours, respectively. Hence, in the intermediate region, i.e., 

after the free drainage regime and before the foam arrest, we expect that micro-scale drainage 

occurs due to the onset of diffusive coarsening and coalescence events, consistent with the evident 

increase in bubble size in Figure 7 with time. Coarsening and coalescence of the foam will be 

discussed in further detail in Section 3.4. 



Figure 8: Plot of average foam volume Vf, avg in cm3 versus foam aging time t in hours illustrates that 
the foam volume remains stable on the order of few days due to the arresting behavior of the liquid 
phase. The bulk foams arrest at approximately 84.3 hours and 26.5 hours as indicated by the vertical 
lines for the (a) 0.025% MFC and (b) 0.05% MFC, respectively. The dashed curves provide the 
standard error in the Vf, avg measurements that are based on three replicates. 

Hence, the data presented in Figure 7 and Figure 8 suggest that micro-CT imaging will be challenging 

during the initial aging time, i.e. t< 0.5 hours when rapid dynamics in foam structure are expected. 

Moreover, it suggests that shorter scan time in the order of minutes is required to minimize possible 

motion artifacts and capture the fast-aging dynamics at early times. Thus, to test the limitations of 

imaging foam dynamics with micro-CT and evaluate the capabilities of advanced machine learning 

approaches to extract quantitative data, we focused on aging times immediately following the free 

drainage regime to evaluate the various approaches for image segmentation. We will then 

investigate the structural dynamics over time to understand the fundamental mechanisms that drive 

the processes observed in Figure 8. 

3.2 Impact of scan time on micro-CT images

For static objects, longer scan times provide higher SNR, which is the main rationale for a scan of 

many hours (Bultreys et al., 2016). To assess the impact of scan time on image quality for dynamic 

samples, two micro-CT images of the 0.025% MFC foam at t = 9 hours, prior to foam arrest (see  

Figure 8) were acquired.  The micro-CT images with scan times of 5 and 30 minutes are shown in 

Figure 9a. Reduced motion artifacts were observed with the shorter 5-minute scan compared to the 

longer 30-minute scan, which had significant streaking artifacts caused by movement (Park et al., 

2015). However, the 5-min scan appeared granulated within the homogenous regions with an 

observable broad range of grey-scale values. 



Figure 9: (a) Example of a 5-minute scan (left) followed by a 30-minute scan (right) of the same foam 
sample where the darker greyscale values represent the less dense air phase and lighter greyscale 
values represent the denser liquid phase; (b) Frequency distribution of the greyscale pixel values 
ranging from 0 to 255. The 5-minute scan shows a broader peak compared to the narrower peak for 
the 30-minute scan due to the presence of higher noise levels in the shorter 5-minute scan. 

The frequency distributions of the greyscale voxels for the 5-minute and 30-minute scans are 

provided in Figure 9b. Broader distribution is observed for both the scans without well-defined 

peaks for the liquid and air phases. As observed in Figure 9a, the motion artifacts, represented by 

the higher pixel values, in the 30-minute scan are significant, resulting in poorly resolved gas cell 

interfaces. This also aligns with the plot of Vf, avg versus t for the 0.025% MFC foam shown in Figure 

8a, where the foam aging mechanisms are dynamic at t= 9 hours since the bulk foams arrest at a 

much later time of about 84.3 hours. 



Relatively fast dynamics also result in motion artifacts for the 5-minute scans during the early stages 

of foam aging. This is observed in Figure 10 where several 5-minute scans are presented for the first 

1 hour of aging. For both MFC concentrations, the image quality significantly improves for aging 

times greater than 30 minutes, as the foam dynamics slow down. The air-liquid interfaces do not 

become sharp until after approximately 30 minutes. Evidence of coalescence (shown with red 

arrows) and diffusive coarsening (shown with yellow arrows) in the first hour of foam aging is 

evident in Figure 9. For the coalescence zones, two bubbles merge and become a larger bubble while 

in the diffusive coarsening zone, the smaller neighboring bubble shrinks while the larger neighboring 

bubble grows.





Figure 10: Demonstration of image quality for the MFC foams at 0.025% and 0.05% bulk fiber 
concentrations at various aging times. Enhancement in image quality is observed for t>30 minutes as 
the foam dynamics slow down. The presence of coalescence events is indicated by red arrows and 
diffusive coarsening regions are indicated by yellow arrows. For the coalescence events, two bubbles 
merge while in a diffusive coarsening region, a smaller neighboring bubble shrinks while the larger 
neighboring bubble grows.

3.3 Justification: image segmentation technique

The approach for segmenting the dynamic foam images was carefully selected by comparing its 

performance over 3 million pixels of GT data. Afterwards, the accuracy of each segmentation 

method was quantified and the technique yielding the least absolute error was chosen to segment 

the MFC foam images.

To quantify the quality of segmentation, an average error rate (εavg) was calculated by averaging the 

percentage errors in the measurement of Euler characteristic (χ), liquid phase area (Al), and air phase 

area (Ag). The results are shown in Table 2. Overall, EfficientU-net provided the least average error 

(εavg) of 11.5%, which is a significant error reduction from the traditional segmentation method 

involving the NLM filter followed by watershed segmentation, which resulted in a significantly higher 

εavg of 28.0%. In addition, EfficientU-net was significantly more effective at minimizing the error in χ 

measurements. The χ provides an indication of the connectivity of the liquid phase and is a crucial 

metric that determines the accuracy of numerous quantitative measurements, such as permeability, 

and other transport processes in complex media (Armstrong et al., 2019). Hence, greater accuracy of 

χ means that simulations or modeling work on the segmented images would be more reliable.  

Table 2: Percentage errors in the measurement of Euler characteristic (χ) of the liquid phase, Total 
area of liquid films (Al), and Total area of air bubbles (Ag) with respect to the GT to compare the 
performance of the different CNN techniques. The reported figures are generated using the average 
of three 1000x1000 pixels GT slices. The average error (εavg) presented in the last row is an average 
of the errors for χ, Al, and Ag. EfficientU-net demonstrates the least average error across all the 
segmentation techniques as shown in the last row. 

% error U-Net U-Resnet EfficientU-net Watershed

χ of liquid phase 59.8 38.9 32.4 82.4

Total area of liquid films (Al) 1.39 0.476 0.136 0.109

Total area of air bubbles (Ag) 19.6 6.71 1.87 1.54

Average error rate (εavg) 26.9 15.4 11.5 28.0



Overall, it is deduced from Table 2 that EfficientU-net provided the closest match to the GT data in 

comparison to the other segmentation techniques. Nonetheless, the percentage errors in total 

bubble area and total liquid film area for the EfficientU-net and watershed segmentation are quite 

similar, which suggests that further investigation is required to delineate between these two 

segmentation methods. 

To further evaluate the performance of the CNNs and traditional segmentation, the frequency of 

wrongly assigned pixels with respect to the GT data was plotted as a function of distance from an 

interface. The results based on 3 x 106 pixels of GT data are presented in 

Figure 11. It is evident that the air-liquid interface experiences the highest frequency of misidentified 

voxels. The percentage error is relatively high for locations at a one-pixel distance from the 

interfaces in 

Figure 11, even though the percentage errors for bulk geometrical measurements in Table 2 are 

relatively low. This trend is expected since the interfacial regions are highly difficult to segment.



Figure 11: Histogram of percentage of error pixels with respect to distance from the interface. The 
error level is higher closer to the interface due to the low SNR of the micro-CT images. It is observed 
that the U-ResNet and Watershed underestimate the liquid phase while the U-Net and EfficientU-
Net underestimate the air phase. The total number of pixels within a distance of pixel=4 from the 
interface is 43075. 



Figure 11a demonstrates that watershed segmentation had the highest frequency of misidentified 

voxels within the air phase that are one-pixel distance from an interface; on the other hand, 

Figure 11b demonstrates that EfficientU-Net had the highest frequency of misidentified pixels within 

the liquid phase that are a one-pixel distance from an interface. To gain an overall understanding of 

which segmentation technique provided the most accurate segmentation of the interface, the sum 

of the misidentified pixels at a one-pixel distance was calculated. As presented in Table 3, Efficient U-

net had the lowest sum of misidentified pixels at a one-pixel distance from an interface. One 

possible explanation is that EfficientU-net yields higher accuracy due to the pre-trained B3 structure, 

which is absent in U-Net and U-ResNet, and thus may provide a better feature extraction encoding 

process (Tan and Le, 2019).  

Table 3: Frequency of misidentified pixels for the air and liquid phases at a distance of one pixel from 
the air-liquid interface. The highest accuracy is achieved with EfficientU-net, which consists of the 
least overall sum of misidentified pixels. The total pixels present in the image at a one-pixel distance 
are 10750.

Error pixel frequency U-Net U-ResNet EfficientU-net Watershed

Air phase 2930 4169 2475 5039

Liquid phase 1869 1292 1930 1227

Overall Sum 4799 5461 4405 6266

Given the overall performance, it was decided that EfficientU-net was the most suitable 

segmentation method to study the MFC foam. This was based on bulk geometrical measures and 

pixel identification near the air/water interface. Both performance measures are particularly 



important when studying the physics of a system controlled by interfacial forces, and thus the 

geometry of interfaces is of utmost importance.

3.4 Evaluation of the MFC foam dynamics 

As previously observed in Figure 10, there was significant movement due to foam drainage for t< 30 

minutes. The first image that could be segmented was collected approximately 45 minutes after 

foam generation. The initial bubble size distributions for the two MFC concentrations at 45 minutes 

are presented in Figure 12. Higher polydispersity of the foam bubbles was observed for the lower 

MFC concentration at early aging times in Figure 12, which provides the surface renderings and 

initial bubble size distributions for the MFC foams. To confirm this, polydispersity was estimated 

using the polydispersity parameter (p32) which is calculated using the Sauter mean diameter 

(Drenckhan and Hutzler, 2015; Kraynik et al., 2004) for the two MFC foams. The p32 for the 0.025% 

MFC foam was 0.172, and 0.05% MFC foam was 0.037 at t= 45 minutes, which means that the 

0.025% MFC foam system was more polydisperse.  

The difference in polydispersity observed at approximately t= 45 minutes was primarily attributed to 

the dynamics during foam generation. The bulk viscosity of the MFC fluid was expected to be higher 

at 0.05% MFC, which means that the bubbles are less likely to coalesce during foam production, 

which would produce a more uniform size distribution of bubbles. With the 0.025% MFC 

concentration, however, the degree of coalescence is presumably higher as the bubble lamellae can 

rupture more easily in a less viscous medium, and thus form a wider range of initial bubble sizes. The 

bulk rheological measurements of the MFC fluid at 0.025% and 0.05% are provided in Figure 13b 

where the viscosity is three times higher for the 0.05% MFC concentration at low shear rates. The 

lowest shear rate used in the measurement was approximately 1 s-1 which was considered to be 

representative of a slowly draining foam (Safouane et al., 2006). Overall, the difference in viscosity 

influenced the foam formation process, which impacted the initial size distribution.



Figure 12: Higher polydispersity is observed for the 0.025% MFC foam. This is attributed to the 
higher degree of coalescence experienced at the 0.25% MFC concentration during foam generation.

The rheology of the interstitial fluid present in the MFC foam was strongly influenced by the extent 

of fiber entanglement. Figure 13 presents the CLSM images showing the MFC structure within the 

foam lamellae and provides the rheological measurements at the two MFC concentrations. While 

the cellulose fibers were nanometer in diameter, they were micrometer in length and formed an 

entangled scaffolding-like network (Pääkkö et al., 2007) that spans across the Plateau borders and 

nodes of the foam structure, see Figure 13a. It is known that the entanglement of the cellulose fibers 

results in yield stress that inhibits the liquid phase to flow (Iotti et al., 2011; Tatsumi et al., 2002). 

Hence, the viscosity is higher with the 0.05% MFC concentration as it can presumably form a more 

entangled network due to the higher density of fibers present in the dispersion (Martoïa et al., 2016; 

Song et al., 2019a, b).  As observed in Figure 13b, the difference in viscosity versus MFC 

concentration was most significant at lower shear rates as would be expected during foam aging. At 

high constant shear rates, the entangled fibers align along flow lines and disentangle, causing a 

reduction in viscosity (Iotti et al., 2011; Karppinen et al., 2012; Saarikoski et al., 2012). Typically, the 

likelihood of entanglement increases with fiber length and decreases with fiber diameter (Hill, 2008; 

Mendoza et al., 2018; Pääkkö et al., 2007). Overall, the entanglement of the MFC fibers is 

responsible for the shear-thinning behavior and the effective viscosity of the dispersion medium. 



Figure 13: (a) Confocal images of the foam phase for 0.025% and 0.05% MFC, and (b) Bulk liquid 
viscosity versus shear rate for 0.025% and 0.05% MFC. The entanglement of the high aspect ratio 
MFC nanofibers results in yield stress that inhibits the liquid phase to flow. The foam bubbles 
surrounded by the 0.05% of MFC fibers experience higher viscosity and higher yield stress than 
0.025% as the shear rate from the foam preparation method is relatively low. 

Variation in the foam drainage rates was observed between the two MFC concentrations. Figure 14 

shows that the liquid fraction of the 0.025% MFC foam was nearly constant between 45 to 65 

minutes, but the liquid fraction values for the 0.05% MFC decreased in this time interval. This is 

attributed to the yield stress of the interstitial fluid, which increases as a function of MFC fiber 

concentration (Song et al., 2019a). Hence, for the 0.05% MFC foam the interstitial fluid must 

overcome greater yield stress to drain through the network of Plateau borders and nodes. This 

means that free drainage occurs over a greater timescale, and while free drainage has completed for 

the 0.025% MFC in the first 30 minutes, the 0.05% MFC foam continues to drain for the first hour. 

This behavior aligns with the estimated free drainage times provided in Appendix 7.1 and is also 



captured in 

Figure 7 where the foam-liquid interface for the 0.05% MFC foam continues to rise within the first 

hour of aging, but the foam-liquid interface remains relatively static for the 0.025% MFC foam. 



Figure 14: Plot of liquid fraction versus distance from the top of the foam image for MFC 
concentrations of 0.025% and 0.05%. The liquid fraction for the 0.05% MFC remains almost constant 
while the liquid fraction of the 0.025% MFC decreases over time. This behavior represents the higher 
yield stress of the 0.05% MFC fibers which decelerate foam drainage and elongate the timescale for 
the free drainage regime. 

As previously seen in Figure 8, the liquid phase appears to become arrested at late time. It is 

hypothesized that the MFC concentration within the liquid phase increases as the foam drains. Once 

a critical MFC concentration is obtained the foam is arrested, and thus foam volume versus time 

becomes relatively static. This would occur if the MFC remains within the PB channels as the liquid 

drains, resulting in an increased concentration. To check if physical clogging of the MFC fibers could 

occur, the PB and node diameters within the liquid phase were measured using pore network 

modeling (Muin et al., 2020). The nodes are the locations where multiple PBs come together. The 

network distributions are provided in Figure 14. At 45 minutes, the average PB diameter was 

approximately 90 micrometers, and the average node diameter was approximately 300 

micrometers. In comparison to the length scale of the MFC fibers, which are on the order of tens of 

microns in length with larger scale tertiary structures due to fiber entanglement, as seen in Figure 

12a, it is expected that the fibers are trapped within the foam liquid phase. Such two-fluid behavior 

is consistent with dynamics observed during micro-rheology characterization of these MFC 



dispersions, where increased yield stress was observed during slow deformation of the fluid that 

caused local drainage (Song et al., 2019b).

Figure 15: Normalized frequency distribution of (a) Volume equivalent diameter of nodes (Dnode), (b) 
Volume equivalent diameter of Plateau borders (DPB) for the MFC 0.025% and 0.05% foams aged by 
approximately 45 minutes obtained from pore network modeling. The average PB diameter was 73 
µm and 89 µm for the 0.025% and 0.05% MFC foams.  

Prior to the foam being arrested, the change in bubble size over time was evaluated to investigate 

how MFC influences the foam aging mechanisms of diffusive coarsening and coalescence. For both 

MFC concentrations, an increase in Sauter mean bubble diameter (d32) and decrease in bubble count 

(N) were observed with respect to foam aging time. The results are provided in Table 4. For the 

0.05% MFC foam, the change in bubble size was slower which was due to the lower likelihood of 

coalescence and slower diffusive coarsening as it was a more viscous medium. These measurements 



suggest that diffusive coarsening and coalescence occurred before the foam was arrested.  

Table 4: Sauter mean diameter (d32) and the Total number of bubbles (N) for the 0.025% and 0.05% 
MFC foam at different aging times (t). Greater change in bubble size and higher reduction in number 
of bubbles is observed at the lower concentration of MFC which is more prone to coalescence.

MFC 0.025% 46 mins 52 mins 58 mins 64 mins

d32 (mm) 1.08 1.11 1.19 1.25

N 2765 2739 2250 2005

MFC 0.05% 47 mins 53 mins 59 mins 65 mins

d32 (mm) 0.80 0.81 0.85 0.87

N 3757 3495 3247 3162

 

Further evidence of diffusive coarsening was found by considering the frequency distributions of 

bubble sizes versus time. The 3D volume renderings in Figure 16a suggest that the foam bubbles 

become bigger and lesser in number with respect to foam aging time. Further details of the size 

distributions are provided in Figure 16b, which shows that the proportion of intermediate bubbles 

decreased over time while the proportion of larger bubbles grew, and the number of smaller 

bubbles increased. This behavior is characteristic of diffusive coarsening and aligns with findings of 

Lemlich (1978) which suggested that for a coarsening-only system, bubbles with radii smaller than 

the instantaneous radius (r21) will shrink, while bubbles with radii larger than r21 will grow over time. 

While some large bubbles are possibly formed via coalescence, it is reasonable to conclude that the 

smaller bubbles can only form due to diffusive coarsening since the formation of satellite bubbles 

during coalescence in such a viscous medium was unlikely. 



Figure 16: (a) 3D volume renderings of the 0.05% MFC foams at t=  1.1 hours, 21 hours, and 44 
hours, (b) Frequency distribution of bubble sizes at these corresponding aging times showing 
propagation of diffusive coarsening occurring as intermediate bubbles larger than r21 grow, and 
intermediate bubbles smaller than r21 shrink. This causes a reduction in the number of intermediate 
bubbles and an increase in the number of smaller bubbles, and the number of larger bubbles leading 
to a bimodal size distribution. 

Indeed, it is difficult to decouple coalescence and diffusive coarsening, it is reasonable to suspect 

that coalescence events would reduce with aging time as the effective MFC fiber concentration 

increases. This effect mainly relates to viscosity since it is difficult for highly viscous films to rupture 

and coalesce. Certainly, coalescence was observed with the 0.025% MFC foam for the first hour of 

aging (see Figure 9), but little or no coalescence was observed for the 0.05% MFC foam. Hence, 

coalescence occurs during foam generation and immediately after foam formation when the 

effective viscosity of the interstitial fluid remains relatively low, while diffusive coarsening appears to 

dominate at later times before the foam becomes arrested. 



Additionally, it is reasonable to conclude that diffusive-coarsening processes dominate over the 

coalescence and drainage mechanisms in the post-foam arrest regime and is primarily responsible 

for the foam death. However, such late aging times were not covered in this study as we were more 

interested to test the limitations of micro-CT imaging by considering early aging times when the 

foam dynamics are relatively faster. 

4. Conclusions

Our study focused on how MFC nanofibers impacted foam drainage, coalescence, and diffusive 

coarsening mechanisms at the microscopic scale. We found that the stabilization mechanism of MFC 

fibers is unique and differs from that of Pickering foams stabilized by inorganic particles, such as 

silica nanoparticles, which involve denser crowding of particles at the foam-liquid interface to 

achieve stabilization (Stocco et al., 2011a; Stocco et al., 2011b). The MFC nanofibers are efficient at 

arresting foams with only a small weight percentage of fibers (<0.05%) due to the high aspect ratio 

of the fibers, and their ability to form entangled tertiary structures which enhances the bulk viscosity 

of the interstitial fluid and restrict foam drainage. This effectiveness, at such low weight 

percentages, would be highly preferred for many industrial applications as it is economically viable 

and does not produce undesirable thick mixtures. In addition, the substitution of inorganic particles 

with MFC to achieve foam stabilization would be an environmentally friendly option since MFC is 

non-toxic and biodegradable (Abdul Khalil et al., 2012). Therefore, MFC could be applicable for a 

wider range of applications, such as drug delivery, food, and cosmetics where non-toxicity is a 

prerequisite (Guevara et al., 2013). 

The main findings are the following.

(1) Dynamic micro-CT imaging coupled with EfficientU-net segmentation can provide an 

accurate 3D geometrical representation of dynamically aging MFC foams.

(2) The proposed technique can achieve a high temporal resolution of 6 minutes. This is 

extremely uncommon with bench-top micro-CT systems, which are generally considered 

unsuitable for studying fast-aging systems.

(3) The machine-learning segmentation approach demonstrated is transferable to low SNR data, 

which can in turn enhance the temporal resolution of any 3D imaging technique.

(4) A small weight percentage of MFC can be effective at significantly stabilizing liquid foams 

due to the entanglement and high aspect ratio of the MFC. 

(5) MFC becomes trapped within the foam structure and concentrates over time, and eventually 

reaches a critical concentration where the foam is arrested. 



(6) Employing multimodal imaging such as micro-CT, CLSM, and bulk foam imaging can provide 

an effective means to study microscale foam stability mechanisms as opposed to traditional 

bulk foam studies. 

While these findings highlight the foam stabilization mechanisms of MFC, further work is required to 

elucidate the critical MFC concentration at which this arrest occurs. In addition, while MFC is 

effective at foam stabilization, the influence of its fiber length and fiber concentration on the degree 

of entanglement remains unclear and could be the focus of future work. Lastly, the proposed 

machine-learning technique coupled with micro-CT could be implemented to study a wide range of 

soft matter systems that are composed of immiscible phases. As such, the scope of this work lies 

beyond the study of only MFC; the proposed methodology could be utilized to study various phase 

separation processes, aging dynamics of foams, and/or the aggregation of emulsion droplets where 

a temporal resolution in the order of few minutes can be useful to quantify the aging dynamics. 
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7. Appendix:

7.1 Calculation for theoretical free drainage time

The timescale for free drainage (tdrain) is estimated using the following equation (Koehler et al., 2000; 

Rio et al., 2014):

𝑡𝑑𝑟𝑎𝑖𝑛 =
𝐻𝜂

𝜅𝜌𝑔𝑅2𝜙𝛼
4



where  is the average foam height of the three replicates estimated from the bulk foam images,  𝐻 𝜂 

is the viscosity at a shear rate of 1 s-1,  is a dimensionless permeability constant of order 10-2, ϕ is 𝜅

the liquid fraction estimated from the micro-CT image analysis, α is the mobility constant which is 

assumed as 0.5 in this case (Saint-Jalmes et al., 2004),  is gravitational acceleration of 9.81 ms-2 and 𝑔

 is assumed as density of water since presumably the fibers are retained in the foam phase, while 𝜌

the liquid drains out of the foam phase. 

Using Equation Error! Reference source not found., the estimated timescale of free drainage was 

0.27 hours and 0.58 hours for the 0.025% and 0.05% MFC foams, respectively.
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Highlights

 Trapping of micro-cellulose and entanglement of fibres within the foam structure results in 
an arrested foam. 

 Deep learning allows for quantitative 3D morphological analyses of liquid foams imaged with 
X-ray microtomography. 

 3D microstructural analyses elucidates the time evolution of foam Plateau borders and 
nodes under dynamic conditions.


