
5872 | Soft Matter, 2015, 11, 5872--5882 This journal is©The Royal Society of Chemistry 2015

Cite this: SoftMatter, 2015,

11, 5872

The role of curvature anisotropy in the ordering
of spheres on an ellipsoid

Christopher J. Burke,a Badel L. Mbanga,a Zengyi Wei,b Patrick T. Spicerb and
Timothy J. Atherton*a

Non-spherical emulsion droplets can be stabilized by densely packed colloidal particles adsorbed at their

surface. In order to understand the microstructure of these surface packings, the ordering of hard spheres

on ellipsoidal surfaces is determined through large scale computer simulations. Defects in the packing

are shown generically to occur most often in regions of strong curvature; however, the relationship

between defects and curvature is nontrivial, and the distribution of defects shows secondary maxima for

ellipsoids of sufficiently high aspect ratio. As with packings on spherical surfaces, additional defects

beyond those required by topology are observed as chains or ‘‘scars’’. The transition point, however, is

found to be softened by the anisotropic curvature which also partially orients the scars. A rich library of

symmetric commensurate packings are identified for low particle number. We verify experimentally that

ellipsoidal droplets of varying aspect ratio can be arrested by surface-adsorbed colloids.

1 Introduction

Emulsions—mixtures of two immiscible fluids—are ubiquitous
systems with many applications in the food, oil, and cosmetics
industries. At the microscopic level, an emulsion consists of
droplets of one fluid embedded in a host fluid; the droplets are
held in an equilibrium spherical shape by the interfacial
tension between the two fluids. Emulsions with anisotropic
droplets are of interest because for some applications, e.g. particle
filtering in porous media,1 performance is improved with
increasing aspect ratio. Anisotropic particles are also known to
be more easily absorbed by cells, thus being effective as drug
delivery systems.2,3 Additionally, ellipsoids fill space more
efficiently than spheres,4 and through chemical functionaliza-
tion, are a valuable component in the nano-architecture of
hierarchical structures.5

A mechanism for sculpting stable shaped droplets exists in
Pickering emulsions, where the constituent droplets are stabi-
lized by colloidal particles adsorbed at the interface.6 The
particles are strongly bound to the surface because they reduce
the interfacial tension between the two immiscible phases.7

Non-spherical shapes can be produced by a sequence of defor-
mation, adsorption, relaxation and arrest as follows: an initial
deformation is applied, for example by an applied electric field8

or by the coalescence of two droplets;9 during this process
additional particles may become adsorbed on the interface
from the host fluid. The droplet then relaxes towards the
equilibrium spherical shape, reducing the surface area and
causing the particles to become more densely packed. If the
surface coverage of colloids is sufficiently high, they will become
crowded and arrest the shape evolution of the droplet before a
spherical shape is reached.9,10

The purpose of this paper is to identify the role that the
anisotropic curvature present in an ellipsoid plays on the
ordering of the particles. We assume the particles interact
purely through volume exclusion. The quality of the packing of
the final state, measured globally by coverage fraction as well as
locally by coordination number, depends on the ratio of the
relaxation timescale tr to the particle diffusion timescale td. As
tr/td - 0, the particles are unable to rearrange themselves
significantly and may get trapped in a glassy state, while for
tr/td - N, the relaxation proceeds slowly and the situation
resembles a classical sphere packing problem. It is this latter
quasi-static limit of the relaxation process that we shall examine
in this work.

Since the colloids are confined to a 2D surface, the arrested
states tend to be quite crystalline as has been shown for
spherical droplets or colloidosomes.11 These structures should,
therefore, exhibit properties similar to 2D elastic crystalline
membranes.12–22 The presence of curvature frustrates the crys-
talline order and induces defects: particles which have more or
fewer than six neighbors, and whose deviation from six-fold
order can be quantified as a topological charge: particles
with coordination number lower than six have positive charge
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and vice versa. Lone defects of positive or negative charge are
known as disclinations. The topology of the droplet surface will
determine the net defect charge, which is 12 for a spherical
topology.23 Furthermore, there is a coupling of defects to the
Gaussian curvature K. Because droplets with non-spherical
geometries possess a variation in Gaussian curvature along
their surface, the defects should be non-uniformly distributed
as theoretical studies have predicted.18–20

In addition to the minimal number of defects required by
topology, pairs of positive and negative defects called disloca-
tions can occur. Droplets with a large system size, i.e. where the
ratio R/r of the droplet size R to the particle size r is large
enough, exhibit chains of defects known as scars.14,16 For
spherical droplets, a transition has been shown: if R/r is below
a critical value only isolated defects occur. Above this ratio,
scars appear and increase in length with R/r.16

For surfaces of nonuniform curvature, the placement of the
defects is an interesting question. The theory of curved elastic
crystalline membranes14 predicts that defects and Gaussian
curvature act as source terms in a biharmonic equation,

r4w(-x) = r(-x) � K(-x), (1)

where w is a stress function and r is the defect charge density (a
sum of point charges). The energy of such a system is,

U ¼
ð
S

dAwð~xÞðrð~xÞ � Kð~xÞÞ; (2)

which must be minimized with respect to defect number and
defect position, with total defect charge conserved according to
the surface topology. While this suggests that defect charges
will be attracted to areas of like-signed curvature in order to
minimize the source term, the fact that these systems are
governed by a biharmonic equation suggests that the coupling
of defects to curvature is nontrivial. This is in contrast to
simpler analogues, for example electrostatics, governed by a
Poisson equation.

There are two important differences between an elastic
crystalline membrane and a 2D arrested hard sphere system.
First, in the hard sphere limit, the in-plane elastic constants of
a hard sphere system are infinite. Second, arrested hard sphere
systems are not able to explore their full phase space, and as
such belong to a class of systems with arrested kinetics that is
not fully understood.24 It is therefore unclear whether energy
optimization principles can be invoked for the ensemble of
arrested states generated by the model used in this paper. One
of the aims of this paper is to clarify the relationship between
arrested hard sphere systems and optimal energy models.
Additionally, the relative wetting properties of the two fluids
may induce a contact angle, leading to inter-particle interac-
tions that may modify the ordering.25

In other systems in the packing limit, e.g. viral capsids26 and
small clusters of colloids,27 configurations with a high degree
of symmetry are typically observed for certain special numbers
of particles. Experimentally, these tend to be stable, and so
the identification of possible symmetric packings may serve
as a guide towards stable self-assembled micro-structures.

We therefore examine the packings systematically by aspect ratio
a and particle number N to identify the symmetric configurations.

In order to explore the role of surface anisotropy on the
ordering of packed particles, we present the results of simula-
tions of hard spheres packed onto ellipsoidal surfaces using
an inflation algorithm. Sample results are shown in Fig. 1. We
investigate the effect of aspect ratio and particle number on the
average distribution of defects on our surfaces and the structure
of the defects themselves. We also identify highly symmetric
configurations. Experimentally, we demonstrate that ellipsoidal
droplets can be stabilized by surface-adsorbed colloids, and we
compare the spatial distribution of defects in the experiments
and simulations. Details of the model and simulations are
presented in Methods.

2 Results and discussion

We employ an inflation packing algorithm in order to generate
packings of spheres on ellipsoidal surfaces. The centroids of N
equal sized spheres are bound to a fixed ellipsoidal surface,
either prolate or oblate, of aspect ratio a. The particles have
hard-sphere interactions and diffuse as the particle radius is
slowly incremented, until further inflation is precluded. Further
details of the algorithm are given in Methods.

Two sets of data were generated from which we obtained our
results. One data set was used for studying the curvature-defect
coupling and scar length, which consisted of packings with
aspect ratio varying from 1.2 to 4.0 in increments of 0.2 (for
both the prolate and oblate cases: we consider the aspect ratio
to be the ratio of the semi-major to semi-minor axis.) The
particle number was varied from 10 to 800 in increments of 10.
Additional prolate packings were generated to study scar orien-
tation, from aspect ratio 4.2 to 8.0 in increments of 0.2, from

Fig. 1 Sample packing of N = 800 particles on a prolate ellipsoid of
aspect ratio 2.6. (A) Side and (B) end views are shown; corresponding plots
are shown for an oblate ellipsoid of aspect ratio 2.6 (C) from the top and
(D) around the rim. Particles are colored by coordination number as
computed from the Delaunay triangulation of the centroids — 5: brown;
6: white; 7: blue; 8: light blue.
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particle number 710 to 800 in increments of 10. 50 config-
urations were generated for each pair of parameters. The
second data set was used for studying symmetry, where we
are interested in lower particle numbers and a more fine-
grained search of the parameter space. This data set consisted
of packings with aspect ratio varying from 1.1 to 4.0 in incre-
ments of 0.1, and particle number varying from 3 to 200 in
increments of unity. 80 configurations were generated for each
pair of parameters.

2.1 Defect distribution

We first examined the distribution of the defects as a func-
tion of the aspect ratio. Defect locations were determined
by assigning a defect charge q = 6 � c to each particle, where
c was the coordination number determined from the Delaunay
triangulation of the particle positions (see Methods). The sur-
face was partitioned into equal-area axisymmetric regions and
the number of defects in each region counted. Each segment
has a different average Gaussian curvature with regions near
the poles having larger curvature for prolate and the reverse for
oblate ellipsoids. In Fig. 2A for prolates and Fig. 2B for oblates,
the defect number density is shown as a function of the axial
position z/z0 averaged over the ensemble of simulations at
fixed aspect ratio and particle numbers ranging from 710 o
N o 800. Generically, it is apparent that defect number density
increases with the Gaussian curvature, as expected. For prolate
ellipsoids at low aspect ratio, the defect number density
increases monotonically with respect to K. At higher aspect
ratios, there is a small secondary peak in segments with low
Gaussian curvature. We verified this occurs for other ranges of
particle numbers N 4 210.

In order to understand this, we plot separate defect charge
densities for positive and negative defects in Fig. 2C, as well
as the net defect charge density. The anomalous peak is
apparent in both the separate positive and negative defect
charge densities, but not in the net defect charge density,
indicating that the excess defects are taking the form of neutral
dislocations or scars.

In Fig. 2B, we see that for oblate ellipsoids, the defect
density again increases near the more highly curved regions.
Fig. 2D reveals, however, that the coupling between defect
charge and curvature is again complicated: while there is a peak
in positive defects at the highly positively curved edge of the
surface, there is a high density of negative defects surround-
ing this, and the net defect charge density is actually negative
near z/z0 = 0.4.

Previous studies21 have shown that the defect charge present
on a curved surface is determined by the integrated Gaussian
curvature of that surface, such that

1

p=3

ð
KdA ¼

Xn
i¼1

qi: (3)

To test whether this model is consistent with our results, we
plot the integrated curvature, normalized as in eqn (3), in each
of the equal-area segments described above, and compare this

with the net defect charge in those sections. The results for
prolate ellipsoids of different aspect ratios are shown in Fig. 2E
as dashed lines, and there is excellent agreement between the
model and the simulation data. The result for oblate ellipsoids,
shown in Fig. 2F, do not show agreement. This is unsurpris-
ing, given the negative net defect charge present in the
simulation results.

This model can be extended to attempt to account for
excess dislocations which occur in addition to the topologically
required core disclinations. As will be discussed further in the
scar transition subsection below, excess dislocations appear in
the form of scars in packings of particles on spherical surfaces
when R/r, the ratio of surface radius to particle radius, is above
a critical value, and above this value the scar length grows
linearly with R/r;14,16 other work similarly suggests that the
stability of scars depends on the ratio of the particle size to the
lateral size of the inter-disclination domain.21,28 On a non-spherical
surface such as an ellipsoid, there is not a single surface radius R,

Fig. 2 Defect number density for (A) prolate and (B) oblate ellipsoids of
varying aspect ratio: blue is 1.2; yellow 2.6; purple 4.0. Points with solid
lines represent simulation data. Dashed lines represent the prediction of
the model in eqn (4) for surfaces of aspect ratio 4.0. Note the small
secondary peak near z/z0 = 0.4 at a = 4 in the prolate case. Example
configurations of a = 4 are shown as insets. Defect charge density is shown
for (C) prolate and (D) oblate ellipsoids of a = 4. The green points represent
the net charge density, and the brown and blue points represent the
density of positive and negative defects, respectively. The secondary peak
in (A) is also visible in the positive and negative charge densities in (C). In
(D), there is a net negative defect charge density near z/z0 = 0.4, despite
the Gaussian curvature being positive. Net defect charge densities for
different aspect ratios are compared to the integrated Gaussian curvature
(dashed lines) for (E) prolate and (F) oblate ellipsoids. In all plots, densities
are given in units of defect number or defect charge per equal-area
segment, averaged over the ensemble of simulation results, with sym-
metric segments on opposite halves of a surface being combined. Lines
are guides to the eye.
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but one can estimate a local surface radius based on the Gaussian

curvature as 1=
ffiffiffiffi
K
p

. One can then assume that for each core
disclination (whose surface density is predicted by K), there is a
scar made up of some number of dislocations ns given by

1= r
ffiffiffiffi
K
p� �

. We fit the scar length data for hard particles packed
on spheres from Fig. 5 to get a function ns(R/r) and use this to
model the defect number density rn as,

rn ¼
K

p=3
1þ 2ns

1

r
ffiffiffiffi
K
p

� �� �
: (4)

This model at first glance seems like a promising candidate
to explain the non-monotonic nature of the observed defect
distributions on prolate ellipsoids, as there is a competition
between high disclination density and low scar length in
regions of high K, and low disclination density and high scar
length in regions of low K. Upon calculating the defect density,
shown in Fig. 2A, we see that, while this model accurately
predicts the magnitude of the defect number density across
much of the surface for prolate ellipsoids, it fails to capture the
anomolous bump. The model does not accurately predict the
defect number density for oblate ellipsoids; it underpredicts it
across the entire surface (Fig. 2B).

These results display a non-trivial interaction between defects
and curvature. While the regions of highest Gaussian curvature
contain the highest density of defects, the defect density is not
a simple monotonic function of Gaussian curvature. This is
apparent in the defect number density in the prolate case, and
in the defect charge density in the oblate case. The fact that the
defect charge density can be negative in regions of positive
Gaussian curvature is especially surprising. However, this is not
necessarily inconsistent with eqn (1) and (2), which imply
complex defect behavior. Further investigation is warranted to
confirm whether the continuum elastic theory gives results
similar to the hard sphere packings here.

2.2 Scar orientation

We next determined whether the scars are oriented by the
curvature anisotropy of the surface. To do so, we consider a
local scar orientational distribution function (ODF) f (a) where
the angle a is measured locally in the tangent plane relative to
the uniaxial axis of the ellipsoid. The ODF may be expanded as
a Fourier series,

f ðaÞ ¼
X
n

Cn cosðnaÞ: (5)

The average value of the first two non-zero coefficients, C2 =
hcos(2a)i and C4 = hcos(4a)i, were calculated for our ensemble
of packings. These quantities are order parameters for orienta-
tional order as they vanish if the scars align isotropically with
the curvature. C2 quantifies nematic order, i.e. uniaxial orienta-
tional order and C4 quantifies quadrupolar order.

To determine the scar orientation, we studied contiguous
chains of defects as shown in Fig. 3A and B. Given a packing
and its Delaunay triangulation, the neighboring defects around
each defect are identified. These adjacent pairs become the edges
of graphs of contiguous defects. Two defects are identified as the

ends of a chain of length l if they are within a connected graph
of defects and the shortest path between them contains l edges.
Once a chain of length l is identified, its orientation relative to
the local principal directions— i.e. the polar and azimuthal
tangent vectors

-

ty and
-

tf, respectively (see eqn (10) in the
Appendix for the parametrization of the surface)— is calculated
thus: given a pair of chain endpoints, their separation vector is
projected onto the surface at each endpoint, giving components
along

-

ty and
-

tf. These components are then averaged between
the endpoints, and the angle a that the resulting vector makes

Fig. 3 Orientation of the scars relative to the curvature anisotropy. (A) A
configuration with a typical scar. (B) Close-up of the scar. Black lines show
edges in a graph comprising the scar. The red dashed line shows a chain of
length 3. Results are shown for (C–E) prolate and (F–H) oblate ellipsoids.
The C2 (D, G) and C4 (E, H) order parameters for prolate and oblate
ellipsoids, respectively, are plotted as a function of aspect ratio for different
regions along the symmetry axis of the ellipsoid: green corresponds to the
center, orange to the mid-region, and blue to the ends. (C) and (F) show
the ODF of chains in the center, mid-regions, and ends of the ellipsoid,
respectively, for prolate ellipsoids of aspect ratio 8 in (C) and oblate
ellipsoids of aspect ratio 4 in (F). Insets of (C) and (F) illustrate the regions
used for spatial binning.
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with
-

ty is recorded as the orientation of the chain. The
z-component of the midpoint of each chain is recorded as its
position and is used to examine how the coupling varies across
the surface.

The analysis was applied to an ensemble of simulation
results as follows: for a given aspect ratio, the orientations of
all chains of length l are collected across simulations with N A
[710, 800] in increments of DN = 10 (with 50 results at each N
resulting in 500 simulations). Order parameters C2 and C4 are
then calculated from this ensemble. Because the curvature
anisotropy varies with the z-coordinate along the surface,
results can be divided according to their position. In our
analysis, we exclude scars in the regions near the poles which
make up 10% of the surface area as here the curvature tensor is
degenerate and the alignment is undefined. The rest of the
surface is broken into six equal-area, azimuthally symmetric
regions, as illustrated in the insets of Fig. 3C and F, and data
from symmetric regions on opposite halves of the ellipsoid are
combined. A chain length of l = 3 was used as this is long
enough to capture scar behavior while having enough chains
for statistical purposes. Shorter chain lengths show a weaker
tendency to orient.

The behavior exhibited by prolate ellipsoids is rather com-
plicated, as seen in the plots of order parameter versus aspect
ratio in Fig. 3D and E. In the center region near the equator,
scars are nematic along the

-

ty direction between aspect ratio 3.6
and 6. At higher aspect ratio this center region is very flat,
leading to fewer scars, and so any orientational order is insig-
nificant. In the mid-regions between the equator and poles,
scars become nematic along the

-

tf direction at aspect ratio 4.4,
and then transition to nematic along the

-

ty direction at aspect
ratio 6.4. Scars near the poles show nematic order along

-

ty
above aspect ratio 2, although this order peaks near aspect ratio 5,
then drops to C2 = 0 at aspect ratio 6.4 before increasing again.
Interestingly, scars on highly prolate ellipsoids can also show
C4 order. This appears in the mid regions above aspect ratio 5.2,
and in the end regions above aspect ratio 6.

The chain ODFs for prolate ellipsoids of aspect ratio a = 8 in
Fig. 3C illustrate the trends that appear at high aspect ratio. It is
apparent from the green curve that that there are few chains in
the relatively flat center of the ellipsoid. The orange curve
shows a high degree of nematic order directed along the polar
direction in the mid-region, and the blue curve for the ends
shows nematic order along the polar direction, as well as a peak
between the directions of principal curvature, which is indica-
tive of negative C4 order.

The case of scar orientation on oblate ellipsoids is more
straightforward. The order parameters are plotted as a function
of aspect ratio for different azimuthally symmetric regions
across the surface, in Fig. 3G and H. Scars at the equator exhibit
a high degree of nematic order in the

-

tf direction, which
increases linearly with aspect ratio up to a = 4. This is
unsurprising, because the curvature on highly oblate ellipsoids
is localized to a nearly one-dimensional region around the
equator of the ellipsoid, and so one expects the scars to form
there, aligned along the equator. There is also a small degree of

C4 ordering. In the regions midway between the equator and
poles, there is a weak coupling of scars along the

-

ty direction.
These trends are illustrated for a = 4 in Fig. 3F the green curve
for the edges displays a peak near the azimuthal direction,
whereas the orange and blue curves show that there are fewer
chains without much order in the flatter regions.

While the scar orientation results for the oblate case are
easily understood, the ordering of the scar orientation on prolate
ellipsoids is far more complicated. The orientation varies greatly
depending on chain position and ellipsoid aspect ratio. Especially
surprising is the emergence of C4 ordering, which corresponds
to a tendency for chains to align in a direction intermediate to
the directions of principal curvatures.

2.3 Scar transition

As is well known from previous work,14,16 packings of spheres
on spherical surfaces exhibit a transition: for low particle
numbers, only the twelve defects required by topology are
present; above a critical particle number Nc, it is favorable for
larger defect structures to occur, typically chains of scars
extending from a core disclination. Increasing N above Nc leads
to a monotonic increase in average scar length.

From our simulation results of packings with 10 o N o 800,
we calculated the average number of excess dislocations per
topologically required disclination for each (a, N). Defects were
weighted in the analysis by the absolute value of their charge.
Given that there are two disclinations per dislocation, and 12
core disclinations, the number of excess dislocations per scar is
calculated thus,

nd ¼
1

2

P
i

qij j

12
� 1

0
@

1
A; (6)

where the sum is taken over all defects. This quantity captures
the same information as the scar length but is easier to calculate,
as individual scars are often not well defined.

Results of the analysis are displayed in Fig. 4. Prolate ellipsoids
[Fig. 4A] show the experimentally observed behavior for low aspect
ratio: for N o 100 particles there are few excess defects, but at
higher particle numbers there is a roughly linear increase in the

Fig. 4 The number of excess dislocation defects per scar on (A) prolate
ellipsoids and (B) oblate ellipsoids. Points and white surface represent the
simulation data. The blue surface represents the prediction of the model
in eqn (7). For low aspect ratio near 1, there is a clear scar transition,
which is not present at aspect ratios far from 1. The inset in (B) shows a
highly commensurate oblate packing with N = 140 and a = 2.6. Note
that data for oblate ellipsoids with N = 10, a Z 2.0 and N = 20, a Z 3.0 has
been excluded.
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number of excess defects. As aspect ratio increases, however,
the transition is softened such that there is a smooth increase
in excess defects with N. This is reminiscent of how applied
fields soften phase transitions;29 here the anisotropy of the
curvature seems to play a similar role.

The oblate packings show the same trends [Fig. 4B]. There
is, however, an additional feature that stands out. At N = 140,
a 4 2, there is a set of nearly scar-free configurations. This is
due to commensurability as the particle number and surface
geometry for these cases are compatible with a highly sym-
metric packing with only the minimally required defects, as
seen in the inset of Fig. 4B. Similar commensurability issues
occur in other systems, e.g. sphere packings on cylinders.30

The model for defect number density developed above in the
defect distribution subsection can be applied to predict the
average scar length for a given aspect ratio and particle num-
ber. For each point in our parameter space, we integrate
eqn (4), estimating r by assuming a packing fraction of f =
0.86 (see eqn (8) below). Our result for scar length is given by,

nd ¼
1

2

Ð
rndA
12

� 1

� �
: (7)

The results are plotted in Fig. 4A and B, alongside the simula-
tion data. For prolate ellipsoids, we see excellent agreement.
Perhaps most importantly, the scar transition is softened at
high aspect ratios, as in the simulation results. For oblate
ellipsoids, the model does not fit the simulation results quite
as well; it tends to underpredict the scar length, especially at
higher aspect ratio. It does, however, exhibit softening of the
scar transition.

A striking difference between these results and those from a
previous study is that here, for hard particles, the transition
occurs at a lower particle number; in ref. 16 it was seen at Nc E
400 using colloidal particles with a soft repulsive interaction.
We therefore performed simulations (see Methods) using two
different potentials, V = d�1 and V = d�6 (where d is the
interparticle separation), the results of which are shown in
Fig. 5. For soft particle packings, we take the average scar
length of the five lowest energy configurations obtained out
of an ensemble of 50. For the hard spheres, Nc E 80, while for
the two soft potentials the transition occurs around Nc E 200
(which appears to be within the uncertainty of the result
presented in ref. 16). The defect number increases at the same
rate with respect to particle number for both soft potentials.
This supports the conclusion in ref. 16 that, for soft particles,
the scar transition does not depend on the specific form of the
particle potential. For hard particles we have quantitatively
different behavior. Visual inspection of hard and soft sphere
configurations reveals that hard sphere configurations possess
gaps (Fig. 5A). It is rare to find a lone disclination; it is much
more common to find a disclination attached to one disloca-
tion (i.e. a small 5–7–5 scar) adjacent to a gap in the packing.
This isn’t seen in soft particle configurations (Fig. 5B), as the
energy penalty is too high, rather a particle can be squeezed to
fill in the gaps. The fact that hard particle packings tend to have

gaps makes them especially suitable for chemical functionali-
zation as described in ref. 5.

2.4 Packing fraction and symmetry

We now turn to how the packing fraction varies with respect to
particle number and ellipsoid aspect ratio. To simplify the
calculation we make the approximation, valid for large N,
that the area covered by a particle is its projection onto a flat
2D surface,

f ¼ Npr2

A
; (8)

where A is the area of the underlying surface. We checked the
validity of this estimate by numerically integrating the area of
intersection between the surface and the spheres on oblate
surfaces of aspect ratio 4.0, and found that the difference
between our estimate and the true value is very small: using
the projected area underestimates the packing fraction by
approximately 1% for packings with N = 100 and 0.1% for
packings with N = 800.

For large N, the packing fraction increases slightly with
aspect ratio. This is because for large a the curvature—and
hence the defects—are mainly localized to the poles on prolate
surfaces or the equator on oblate surfaces and so more of the
surface can be covered by the planar hexagonal packing, con-
sistent with the results of the above subsections on the defect
distribution and scar transition. For low N, the opposite tends
to be true; the packing fraction decreases with aspect ratio.
However, the trend is more complex and the packing fraction is
sensitive to both N and a at low N. Visual inspection of these
configurations reveals that for specific combinations of N and a,
the packings have a high degree of symmetry, suggesting a
commensurability effect, such as that seen in the scar transition
subsection above.

Fig. 5 Excess dislocations per scar as a function of particle number for
hard (blue) and soft V = 1/d (orange) and V = 1/d6 (red) interactions. Inset
(A) is a hard particle packing and inset (B) is a soft particle packing. The
arrow indicates the particle number of the inset packings.

Paper Soft Matter

Pu
bl

is
he

d 
on

 1
7 

Ju
ne

 2
01

5.
 D

ow
nl

oa
de

d 
by

 U
N

SW
 L

ib
ra

ry
 o

n 
16

/0
7/

20
15

 0
6:

23
:1

4.
 

View Article Online

http://dx.doi.org/10.1039/c5sm01118c


5878 | Soft Matter, 2015, 11, 5872--5882 This journal is©The Royal Society of Chemistry 2015

To identify these commensurate combinations, we con-
ducted a more thorough search for symmetric packings using
the second data set. An arbitrary packing must break the
ellipsoidal symmetry group of the surface and hence must
belong to some finite subgroup of DNh; most packings at high
particle number do so trivially, retaining only the identity
element. Defining a suitable inner product (A, B) that measures
the distance between two packings, a packing possesses a
symmetry C if (A, CA) = 0 where C is a group element of DNh.
The elements C can be constructed from the group generators:
(i) an infinitesimal rotation about the ellipsoid symmetry axis;
(ii) spatial inversion, and (iii) a rotation by p about an axis
perpendicular to the symmetry axis.

We used a norm (A, B) defined such that,

ðA;BÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i

minj ~ai � ~bj
��� ���
r

0
@

1
A

2
vuuut ; (9)

where the -
ai and

-

bj are the positions of particles in packings A
and B, respectively: for each particle in A, the closest particle in
B is found and the separations between these pairs are divided
by the particle radius. The root mean square of these normal-
ized separations is then taken as the inner product. From this,
together with the group generators, all symmetries such that
(A, CA) r e, a threshold separation were found. From this
catalog of symmetries, for a particular configuration the appro-
priate group was determined. From a collection of configura-
tions with a given (N, a), the most symmetric configuration was
chosen by the following procedure. First, the configurations
with the largest symmetry group were identified. Then, for each
of these configurations, the symmetry group element with the
highest symmetry norm was identified. Finally, the config-
uration with the minimum highest symmetry norm was chosen
as the most symmetric.

The results of this analysis are displayed in Fig. 6A showing
the order and chirality of the symmetry group of the best packing
for each combination of particle number and aspect ratio. The
degree of rotational symmetry for each packing is shown in
Fig. 6F. One striking feature is that, for certain particle numbers,
long vertical stripes appear in the plots representing commen-
surate aspect ratios for that particle number. Furthermore, low N
favors achiral packing while chiral packings occur more often for
higher particle number. For prolates the stripes occupy a narrow
range of aspect ratio and occur in band-like sequences described
by a straight line a = mN with slope m. Each of these sequences
corresponds to a different degree of rotational symmetry nr, and
the particle numbers in the sequence are separated by nr.
Inspecting the configurations in a single sequence, the differ-
ence between a configuration with N particles and the next with
N + nr particles is that an additional row of nr particles has been
inserted in the space created by the longer aspect ratio. This is
illustrated by a sequence of configurations with fourfold rota-
tional symmetry in Fig. 6G–J.

For oblate ellipsoids, the symmetric configurations for N
particles occur at a much broader range of aspect ratios and

symmetric configurations are observed at much higher N and
tend to have six-fold rotational symmetry. The reason for this is
that the high curvature at the end of the prolate ellipsoids
accommodates nr-fold defects at the poles, and these appear to
determine the rotational symmetry for the entire configuration;
for oblates, the poles have low curvature and promote hexagonal

Fig. 6 The symmetry landscape for packings with varying particle number
and aspect ratio, using a symmetry norm cutoff of 0.1. (A) Shows the
chirality and the order of the largest symmetry group found. Orange
represents chiral packings and blue represents achiral packings. The boldness
of the color corresponds to the order of the packing’s symmetry group as
shown in the key. Note that packings whose only symmetry is the identity
are colored white to distinguish them as being trivially symmetric. Sample
packings are shown: (B) an achiral packing with N = 74, a = 2.5; (C) a chiral
packing with N = 74, a = 1.5—note that (B) and (C) have the same particle
number, but show different chirality for different aspect ratio; (D) a packing
with fourfold rotational symmetry with N = 69, a = 1.4; (E) a packing with
fivefold symmetry N = 76, a = 2.4. Light brown particles have c = 4. (F)
shows the degree of rotational symmetry of each configuration about its
ellipsoidal symmetry axis. Note that for both (A) and (F), no data is shown
for a = 1 (spheres) as the spherical symmetry group is not a subgroup of
DNh. Sample packings are shown for (G) N = 30, a = 2.4; (H) N = 34, a =
2.5; (I) N = 38, a = 2.7; (J) N = 46; these packings all occur in the diagonal
band of fourfold rotational symmetry in the top left of (F).

Soft Matter Paper

Pu
bl

is
he

d 
on

 1
7 

Ju
ne

 2
01

5.
 D

ow
nl

oa
de

d 
by

 U
N

SW
 L

ib
ra

ry
 o

n 
16

/0
7/

20
15

 0
6:

23
:1

4.
 

View Article Online

http://dx.doi.org/10.1039/c5sm01118c


This journal is©The Royal Society of Chemistry 2015 Soft Matter, 2015, 11, 5872--5882 | 5879

packing, hence causing six-fold rotational symmetry to be more
common. Interestingly, other degrees are present including nr =
4 and nr = 5 and these configurations contain regions of highly
oblique packings (Fig. 6D and E).

In general, these symmetric packings are notable because
they contain a high degree of hexagonal ordering over much of
their surface, with evenly spaced defects throughout. This high
degree of regularity should provide stability to the packed
structure, and reduce the likelihood of failure from irregularly
spaced defects.

3 Experiment

An experimental realization of ellipsoidal arrested droplets
was performed to confirm the stability of these structures.
Ellipsoidal droplets with arrested interfaces are produced by
preparing a Pickering emulsion and then mixing the emulsion
to deform and arrest the droplets in an elongated shape. Details
are given in Methods.

Fig. 7 shows several examples of the arrested droplets observed.
Because the curvature of a droplet is significant across its surface,
several focal planes have been combined in the images in order
to study the packing of spheres on the drop surface. Particle
coordinates are determined by finding the local brightness
maxima in the image, recording their coordinates, and correct-
ing for any unrealistic results via direct comparison with the
experimental images.

Arrest is able to preserve shapes identical to intermediate states
of droplets in an elongation field,31 as seen in the Fig. 7A and C,
and even shapes resembling sections of such shapes as in the case
of Fig. 7E. While the dynamical formation of these shapes was not
studied, it is clear that a wide range of geometries can be formed.
We note that the droplet of aspect ratio 5.1 has a spherocylindrical
geometry, as opposed to ellipsoidal.

Fig. 7B, D and F shows the results of a Delaunay triangula-
tion of the sphere coordinates. We do not display particles at
the boundary of the triangulation, as they include spurious
edge defects identified as a result of the boundary rather than
the ordering of the particles. In each case the arrested state of
the interfacially adsorbed spheres is evident from the visible
regions of crystalline order. Generally, however, the experimental
droplets contain more defects than the simulated packings. In
Fig. 7B a high degree of hexagonal close-packing is noted near
the ends of the droplet, while the center of the structure is more
disordered with a higher defect density. Three important factors
present in the experiment that are not accounted for in the
simulation may contribute to this. First, the evolution of the
surface as it relaxes will influence particle rearrangement. Different
parts of the surface will grow or shrink at varying rates, affecting
where crowding first occurs. Second, particles adsorbed at an
interface will not act as purely hard spheres. Capillary interactions
caused by the deformation of the surface by the particles will
lead to attractive interactions between particles.25 This may
lead to aggregation of particles during relaxation and is likely to
influence the final ordering of the arrested state. Finally, as
discussed in the introduction, the experimental relaxation does
not take place quasistatically, as is posited by studying the
packing limit; it is highly likely that the particles are arrested in
a nonoptimal and possibly metastable glassy state.

4 Conclusion

In this paper, we show that defects in the packing of hard spheres
onto an ellipsoidal surface couple nontrivially to the curvature.
For low aspect ratios, the defects occur at regions of high
curvature as predicted by previous studies; additional secondary
peaks in the defect distribution occur in less-curved regions for
prolate ellipsoids of sufficiently high aspect ratio. As previously
observed for packings on a spherical surface, above a critical
particle number the defects take the form of chains or ‘‘scars’’
rather than isolated defects. This scar transition occurs at a lower
particle number than the previously studied case for soft inter-
particle interactions, and is softened by the presence of aniso-
tropic curvature. The alignment of the scars with the curvature is
more complicated: in flat regions, there is no alignment; in
intermediate regions, there is weak uniaxial alignment with the
minimum curvature; in regions of strong curvature, quadrupolar
alignment is seen. We identified a rich catalog of symmetric
configurations from our simulations, each belonging to a sub-
group of the ellipsoidal symmetry group. Plotting the subgroup
order in (N, a) space reveals commensurate surfaces that promote
symmetric packings. Finally, we were able to use the mechanism
of arrest to sculpt ellipsoidal Pickering emulsion droplets of
varying aspect ratio, demonstrating the validity of the fundamen-
tal idea. While careful analysis of these experimental packings
reveals scars as predicted, the defects appear to agglomerate in
regions other than those of strongest curvature, suggesting that
dynamical effects play a significant role in the ordering as well
as the geometric effects studied here.

Fig. 7 Experimental data for particle-stabilized droplets of aspect ratio (A, B)
1.6, (C, D) 5.1, and (E, F) 3.0. Scale bars represent 15 mm. (A, C, E) Microscope
images; (B, D, F) reconstructed particle positions, colored by coordination
number as determined by Delaunay triangulation of the particle centroids—4:
light brown, 5: dark brown, 6: white, 7: dark blue, 8: light blue, 9: purple. In
general, defects are more common and are more likely to be found at low-
curvature regions of the droplet in the experiments than in simulations.

Paper Soft Matter

Pu
bl

is
he

d 
on

 1
7 

Ju
ne

 2
01

5.
 D

ow
nl

oa
de

d 
by

 U
N

SW
 L

ib
ra

ry
 o

n 
16

/0
7/

20
15

 0
6:

23
:1

4.
 

View Article Online

http://dx.doi.org/10.1039/c5sm01118c


5880 | Soft Matter, 2015, 11, 5872--5882 This journal is©The Royal Society of Chemistry 2015

Heuristic models of geometrically frustrated order are able
to explain some of the observed features—namely the defect
charge density and average scar length for prolate ellipsoids,
and the softening of the scar transition. These models fail,
however, to capture features such as the secondary peak in the
defect number density on prolate ellipsoids, and they break
down for highly oblate ellipsoids.

One question raised by this work is how these non-equilibrium
systems of arrested hard spheres compare to equilibrium curved
membranes in the continuum limit. Most clearly, the hard-
particle interaction influences the scar transition. The non-
trivial nature of the results presented in the defect distribution
and scar orientation sections is evidence of a complicated coupling
between order and curvature. Whether this coupling is consis-
tent with eqn (1) and (2) is an open question.

The role of dynamical effects on ordering is also unclear
at this time. As outlined above, possible influences include
the varying rate of area change across the droplet, inter-
particle interactions, and rate of the droplet shape relaxation.
A study of the role of these dynamical influences on the order
is in preparation.

Methods
Experimental preparation of arrested droplets

Emulsions are first prepared by mixing 3% w/w monodisperse
1.5 mm diameter precipitated silica particles (Nippon-Shokubai
KE-P150) into hexadecane (Sigma-Aldrich, 99%).9 A volume of
the silica-hexadecane dispersion is then emulsified into an
equal volume of deionized water by manual shaking for three
minutes. The emulsion was then aged for 24 hours and inspection
revealed a small fraction of elongated droplets. Imaging of the
droplets is carried out on a Leica DM2500M light microscope
using phase contrast optics.

Hard-sphere simulations

We employ a stochastic inflation packing algorithm inspired by
the Lubachevsky–Stillinger algorithm, which is known to yield
packings of high coverage fraction.32 In each packing simulation,
a fixed ellipsoidal surface, either prolate or oblate, is chosen
with aspect ratio a and the length of the semi-minor axis is fixed
to be unity in dimensionless units. Particles are modeled as
monodisperse hard spheres of radius r that is slowly increased
during the simulation. The number of particles N is specified
and particles are deposited at the start of the simulation by
random sequential adsorption such that the center of each
particle is constrained to lie on the surface of the ellipsoid.
Initially, r is such that the packing fraction is f = 0.05.

The algorithm proceeds by two kinds of moves: (i) Monte
Carlo diffusion steps where particles are moved randomly along
the surface and (ii) inflation steps where the radius of all
particles is increased by dr. In each diffusion step, N individual
Monte Carlo moves of randomly chosen particles are
attempted. The step size is chosen randomly using a Gaussian
distribution, as described below. Only moves that do not result

in overlap are accepted, with overlaps checked for in the 3D
configuration frame.

The moves are performed in the 2D space of conformal
surface parameters (u, v), hence yielding a radially symmetric
probability distribution of moving a certain arclength s in any
tangential direction from the current location. The surface is
parametrized as,

x(y, f) = (x0 sin y cosf, x0 sin y sinf, z0 cos y), (10)

where x0 = 1, z0 = a for prolate surfaces and x0 = a, z0 = 1 for
oblate surfaces. The determinant of the metric is,

gðyÞ ¼ 1

2
x0 sinðyÞ2 z0

2 þ x0
2 þ z0

2 � x0
2

� �
cosð2yÞ

� �
; (11)

and the conformal parameter u is given by the integral of the
conformal factor,

uðyÞ ¼
ðy
p=2

ffiffiffiffiffiffiffiffiffiffi
gðy0Þ

q
dy0; (12)

which can be inverted to find y(u). We do an approximate
inversion by calculating u(y) for values of y from 0 to p in
increments of p/100 and using a high order polynomial least
squares fit on these points, enforcing equality between the fit
and exact values at the endpoints y = 0 and y = p. The conformal
coordinate v is simply v(f) = f.

Given the definitions above, diffusion steps are taken as
follows. An unscaled step size is chosen for each direction, Duo

and Dv0, from a normal distribution with variance 1. These are
scaled by the simulation step size s and by the inverse of the
conformal factor to give step sizes in the (u, v) conformal space:

Du ¼ sDu0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðyðuÞÞ

p (13)

Dv ¼ sDv0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðyðuÞÞ

p : (14)

These steps are used to update the previous u and v coordinates
of the particle, which are then transformed to the y and f
coordinates as explained above. Finally, the surface para-
metrization eqn (10) is used give the particle coordinates in the
3D configuration space.

Because y must have a value between 0 and p, we take the
following step if it falls outside this range at any point. If u is
greater than u(0) (less than u(p)), we set u = 2u(0)�u (u = 2u(p)�
u) and v = mod(v + p, 2p), i.e. we allow the particle to pass over
the coordinate singularity at the poles of the surface.

As the particles diffuse, s is varied in order to more effi-
ciently explore relevant areas of configuration space (leading to
large steps when the configuration is loosely packed and
smaller, more relevant steps when tightly packed.) The initial
value of s scales with the square root of the ellipsoid surface

area A, sinit ¼ 1� 10�4
ffiffiffiffiffiffi
A

4p

r
. After each time step, the fraction of

attempted moves that were accepted is calculated. The length
scale s is then decreased by 1% if the acceptance fraction is
o0.5 and increased by 1% otherwise; s is reset after each
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inflation (described below) to its initial value. Bounds are
imposed such that 1 � 10�6 o s o 1. Adjusting s leads to
improved performance of the algorithm as the particles can
diffuse more when they are less densely packed and take
smaller steps (which are more likely to be accepted) when they
are more densely packed. We do this as it is known that
adaptive algorithms lead to packings of higher density.33 We
emphasize that in this work the Monte Carlo approach is used
as an optimization strategy; it is not intended to, and indeed
cannot, replicate the physical process by which the structures
form since the s updates are non-Markovian.

After M = 100 diffusion steps, an inflation step is performed
where the particle radius is increased slightly (‘‘inflated’’) either

by a specified fixed amount Dr ¼ 1� 10�5
ffiffiffiffiffiffi
A

4p

r
or by the half of

the largest amount allowed that would not result in the overlap
of any pair of particles, whichever is smaller.

The halting criteria for these simulations is as follows: every
L = 100 inflation steps, the relative change in coverage fraction
Df is calculated. If this is less than a specified value Dftol = 10�4

then the simulation halts.

Soft particle simulations

In order to compare our results regarding scar formation in
hard particle packings to other work involving particles with
soft interactions, we performed a set of simulations using a
modified Monte Carlo algorithm which incorporates a soft
interparticle potential. In order to test potentials of different
softness, the interparticle potentials are set as either Uint = d�1

or Uint = d�6 (where d is the center-to-center distance between
particles). The particles diffuse similarly to the hard particle
simulation with two differences: the average step size s is
constant for all moves, and moves are accepted or rejected
using a Metropolis scheme,34 with acceptance probability

P ¼
1 DUo 0

exp �DU=kBTð Þ DU4 0

(
(15)

where DU is the change in the system energy after a single
particle move. The initial temperature is set by using a rough
estimate of what the energy of a single particle in the final
configuration will be assuming six-fold ordering and that
nearest neighbor interactions dominate: T0 = 6Uint(2rest)/kB,

where rest ¼
ffiffiffiffiffiffiffiffiffiffi
A=N

p
is an estimate of the average particle separa-

tion. The system is annealed by multiplying the temperature by
0.99 after every 100 sets of diffusion moves until exp(�DU/kBT) - 1
within machine precision. After every 100 sets of diffusion
moves, the change in energy is recorded and the simulation
halts once this change in energy is less than 1 � 10�16.

Defect analysis of simulations

To analyze defects in the simulated configurations, we use a
ball-pivoting algorithm35 in the mesh-generation software
Meshlab to generate triangulations of the particle centroids.
These triangles are then equiangulated by a custom script to
remove narrow triangles. Edges are flipped in random order

and accepted if they improve the triangulation; this is repeated
until a full sweep of the mesh yields no further improvements.
From these optimized triangulations, the coordination number
of each particle is given by the number of particles to which it
is connected.
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